GENETICAL STUDIES IN TWO MAIZE CROSSES El- Absawy, E.A.
 Genetic Engineering and Biotechnology, Research Institute, Minufiya University.

Abstract

Gene action, heterosis, potence ratio, inbreeding depression, , genetic coefficient of variation, heritability and predicted genetic advance from selection in the two maize crosses i.e., ($\mathrm{M} 4 \times \mathrm{M}_{39}$) and ($\mathrm{M}_{39} \times \mathrm{M}_{1}$) were the main objectives of the present study. Six populations in each cross, namely, $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{~F}_{1}, \mathrm{~F}_{2}, \mathrm{Bc}_{1}$ and Bc_{2} were studied. Most values of mean performance and most variance values in cross-II (M_{39} $x M_{1}$) were higher than those of cross-l except number of ears / plant and plant height. Generally, higher heterosis percentage values were detected in the second cross ($\mathrm{M}_{39} \times \mathrm{M}_{1}$) for most studied traits including grain yield / plant and some of its components except number of rows / ear, number of ears / plant and tasseling and silking dates. The range of heterosis in cross-I was -6.15% for silking date to 115.96% for grain yield / plant relative to mid parent and -2.55% for silking date to 90.99% for grain yield / plant relative to better parent. Meanwhile, in the cross-II it ranged from -1.85% for tasseling date to 133.60% for grain yield / plant relative to mid parent, while it ranged from 3.61% for silking date to 114.16% for grain yield / plant relative to better parent. Most values of inbreeding depression were higher for the first cross than those of the second one, particularly for grain yield / plant and some of its components. Potence ratio values less than unity were detected in cross-I for ear length and tasseling and silking dates ; and in cross-II for number of rows / ear and tasseling and silking dates indicating partial dominance for these traits. Meanwhile, over dominance values were detected in remaining traits including grain yield / plant in the two crosses, hence, the values were more than unity. In the two crosses, the mean effect of parameters (m) was highly significant and the values were higher in cross-II than their corresponding ones in cross-I except few cases i.e.,number of kernels / row and number of ears / plant in cross-I. Generally, for grain yield / plant, dominance and epistatic types of gene action additive x additive were obtained in cross-I. Meanwhile, in cross-II dominance gene effects were had the major contributing factor in the performance of this trait. Heritability values for grain yield /plant in the narrow sense reached $86.67 \%, 92.99 \%$ for cross-I and cross-II, respectively, and in cross-I and cross-II for broad sense were 87.49% and 72.37%, respectively. The higher estimates in the broad sense indicating the prevalent of dominance and epistatic effect in the inheritance of grain yield / plant. The expected genetic advance from selection ($\Delta \mathrm{g} \%$) in F_{2} for grain yield / plant was higher in crossII (28.39\%) than in cross-I (22.55\%).

INTRODUCTION

Genetic information on the inheritance of agronomic traits as grain yield and its components in maize is required to help the breeder in planning suitable programmes to identify the best line and production of hybrids. Many of plant breeders are interested in the estimation of gene effects to obtain the most advantageous breeding procedure for improving the trait under study i.e. Mather 1949 who estimated both $\sigma^{2} \mathrm{~A}$ and $\sigma^{2} \mathrm{D}$ in the absence of epistasis. He reported that if the scale of measurements deviated from additivity, a transformation should be done to make effects additive. Hallauer and Miranda

El-Absawy, E.A.

1981 studied additive and dominance effects. Also the presence of epistatic gene effects beside additive and dominance effects in the inheritance of various quantitative traits and the magnitude of the three types of gene effects in genetic variation is required. Several models have been used to estimate the generations means (Hayman 1958, 1960 and Gamble 1962). Hayman (1960) reported that the presence of epistatic effects would be bias estimates of additive and dominance effects. Gamble (1962) used six populations ($\mathrm{P}_{1}, \mathrm{P}$ 2, $\mathrm{F}_{1}, \mathrm{~F}_{2}, \mathrm{Bc}_{1}$ and $\mathrm{Bc} \mathrm{2}_{2}$) from crosses among six inbred lines of maize to estimate six genetic parameters ($\mathrm{m}, \mathrm{a}, \mathrm{d}, \mathrm{aa}, \mathrm{ad}$ and dd). All traits in all crosses for all four experiments showed significant dominance effects except kernelrow number. He obtained also, significant additive effects for all traits except yield, which was significant in 47% of the 15 crosses. Hence, it seems that both additive and dominance effects made a significant contribution to the inheritance of these traits. He also reported although not as frequent as additive and dominance effects, significant epistatic effects were frequent for all traits. Sprague and Suwantaradon (1975) obtained similar results for yield and other traits .Nawar et al. (1992a) showed that the dominance and epistasis (additive x additive)gene action in two maize crosses were more important in the inheritance of grain yield /plant and that the observed heterosis was mainly due to their effects. Nawar et al. (1996) estimating the genetic variance components in S.C 10 using the generation mean variances .They reported that most of the estimates of genetic variance were significant . The average degree of dominance was in the range of partial dominance for all traits. Dominance variance was more important and significant than other portions of genetic variance components. Khalil (1999) estimated genetic effects from generation means in two maize crosses through six generations i.e., $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{~F}_{1}, \mathrm{~F}_{2}, \mathrm{Bc}_{1}$ and Bc_{2}. He reported that, in the two crosses most studied traits especially grain yield/plant exhibited over dominance effects. For grain yield /plant, significant dominance and epistatic (additive x additive) gene effects were found in cross-1. Meanwhile, in cross- II only significantly positive of gene effects of dominance was prevalent. For grain yield/plant, heritability estimates values in the narrow sense for the two crosses were intermediate and reached to 42.92% and $38: 7 \mathrm{~s} \%$ for cross-I and cross-II respectively, while in the broad sense the estimated values were 83.18% and 74.70% for the two crosses, respectively. The range of heterosis effects in cross-l were from 1.01% and -3.31% for silking date to 87.89% and $54.3 . \%$ for grain yield /plant relative to mid and better parent, respectively. Meanwhile, it ranged in cross-II from -4.05% and -7.57% for tasseling date to 109.12% and 54.90% for grain yield/plant relative to mid and better parent, respectively. Significant and positive inbreeding depression values were found for all traits except for tasseling and silking dates in the two crosses. Most estimates of inbreeding depression were higher in cross-I than those of cross-II, particularly for grain yield/plant. The expected genetic advance from selection ($\Delta \mathrm{g} \%$) reached 26.61% and 13.22% for cross-I and cross-II, respectively. The present work was conducted to investigate the types of gene action and heterotic effects for eleven agronomic traits including grain yield/plant, also, to determine heritability and predicted genetic advance in the F_{2} generation for all studied
traits of the two crosses. The ultimate goal of this study is to give an insight in the breeding value of both crosses that could be utilized in maize breeding programme aiming to improve these traits under study.

MATERIAL AND METHODS

The experiments reported herein were carried out at EL-Rahib Experimental Station Faculty of Agriculture Minufiya University during the three successive seasons 1997,1998and1999. Three Egyptian maize inbred lines produced by the Agronomy Department, Faculty of Agriculture Minufiya University, i.e., $\mathrm{M}_{4}, \mathrm{M}_{39}$ and M_{1} were crossed in 1997 season to produce the two crosses, i.e., cross-I($\mathrm{M}_{4} \times \mathrm{M}_{39}$) and cross-II ($\mathrm{M}_{39} \times \mathrm{M}_{1}$). In 1998, the F_{1} plants of the two crosses were selfed pollinated and backcrossed to each parent of each cross to generate the seeds of F_{2} and backcross populations.

In 1999 season, the two adjacent experiments were conducted including the six populations of each cross, ie, $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{~F}_{1}, \mathrm{~F}_{2}, \mathrm{Bc}_{1}$, and Bc_{2}. These materials were grown in three replications in each experiment. Each replication consisted of 15 ridges for each population,i.e., $P_{1}, P_{2}, F_{1}, \mathrm{Bc}_{1}$, and Bc_{2} and 30 ridges for F_{2} population in each experiment. The kernels were planted in each hill, thinned later at one plant per hill on one side of the ridge. Apart between hills were 30 cm and 70 cm between ridges. Normal agricultural practices of maize were followed. eleven quantitative characters were measured, i.e., grain yield / plant (gm.), ear length (cm.), ear. diameter (cm.), number of rows /ear, number of kernels / row,100-kernel weight (gm.), number of ears/plant ,plant and ear heights (cm.), silking and tasseling dates (days).The grain yield /plant for each entry in all populations was adjusted based on 15.5% moisture in the grain and shelling percentage. The genetic variance within F_{2} population was firstly estimated. If that variance was significant, various genetical parameters were then computed. The genetical parameters were: heterosis relative to mid and better parents \%, inbreeding depression\%, potence ratio, heritability in broad and narrow sense (calculated according to Mather (1949). Also, according to Gamble's procedure (1962), six parameters of gene effects and their significance were estimated i.e., mean (m), additive (a), dominance (d), additive x additive (aa), additive x dominance (ad) and dominance x dominance (dd).

RESULTS AND DISCUSSION

Mean (\bar{x}), variance (σ^{2}), variances of means ($\sigma^{2} \bar{x}$), and coefficient of variability (C.V) of the eleven traits in the two crosses for parents, $\mathrm{F}_{1}, \mathrm{~F}_{2}$, Bc_{1}, and Bc_{2} are presented in Table (1). Estimates of the genetic variance in F_{2} plants for all traits in the two crosses were significant, hence, the other needed estimates were calculated. Most values of mean performance of cross-ll were higher than those of cross-l. Also, most variance values in cross- II were higher than those of cross-I except number of ears / plant and plant height.

Table (1): Mean (\bar{x}), variance (σ^{2}), Variance of mean ($\sigma^{2} x$) and coefficient of variability (C.V.\%) of the six populations of crosses I and II for all studied traits.

Traits	Population	Cross I ($\mathrm{M}_{4} \times \mathrm{M}_{39}$)				Cross II ($\mathrm{M}_{39} \mathbf{x} \mathrm{M}_{1}$)			
		X	σ^{2}	$\sigma^{2} \overline{\mathrm{x}}$	C.V\%	$\overline{\mathrm{x}}$	σ^{2} e	$\sigma^{2} \overline{\mathrm{x}}$	C.V\%
Grain yield plant (gm.)	P_{1}	180.9	186.17	31.03	7.54	139.07	113.45	18.91	7.66
	P_{2}	139.07	113.45	18.91	7.66	166.84	227.63	37.94	9.04
	F_{1}	345.50	172.30	28.72	3.80	357.30	358.29	59.72	5.30
	F_{2}	274.54	1179.97	3026.64	12.51	302.75	3323.62	100.72	19.04
	BC_{1}	333.46	545.22	60.58	7.00	301.17	1917.14	213.02	14.54
	BC_{2}	334.70	782.30	86.92	8.36	296.30	2324.69	258.30	16.27
$\left\lvert\, \begin{array}{ll} \text { Ear } & \text { length } \\ (\mathrm{cm}) & \end{array}\right.$	P_{1}	18.38	0.86	0.14	5.04	15.39	0.27	0.05	3.38
	p_{2}	15.39	0.27	0.05	3.38	15.89	0.78	0.13	5.54
	F_{1}	19.57	0.73	0.12	4.35	20.40	0.56	0.09	3.67
	F_{2}	19.11	2.09	0.07	7.56	19.97	2.19	0.07	7.41
	BC_{1}	19.62	1.28	0.14	5.77	19.71	1.90	0.21	7.00
	BC_{2}	20.47	1.87	0.21	6.68	20.26	1.46	0.16	5.97
Ear diameter (cm)	P_{1}	4.13	0.02	0.004	3.56	4.35	0.02	0.003	2.82
	P_{2}	4.35	0.02	0.003	2.82	4.27	0.04	. 007	4.85
	F_{1}	4.78	0.02	0.003	2.78	4.80	0.02	0.003	2.63
	F_{2}	4.56	0.08	0.002	6.23	4.68	0.07	0.002	5.61
	BC_{1}	4.81	0.04	0.005	4.22	4.69	0.03	0.003	3.75
	BC_{2}	4.91	0.04	0.005	4.13	4.80	0.07	0.008	5.52
No of rows/ear	P_{1}	11.20	1.33	0.05	10.31	10.63	5.12	0.15	21.29
	P_{2}	10.63	5.12	0.15	21.29	13.24	0.98	0.03	7.46
	F_{1}	13.68	2.16	0.07	10.74	14.00	1.87	0.06	9.76
	F_{2}	13.39	3.26	0.02	13.49	13.40	3.76	0.24	14.48
	BC_{1}	14.11	2.81	0.08	11.87	13.91	3.55	0.08	13.54
	BC_{2}	14.09	3.08	0.07	12.46	13.49	3.64	0.09	14.14
No of kernels/ row	P_{1}	34.84	18.89	0.76	12.47	19.42	36.09	1.24	30.30
	P_{2}	19.42	36.09	1.24	30.30	31.54	14.87	0.62	12.22
	F_{1}	45.50	10.53	0.35	7.13	43.97	33.25	1.15	13.11
	F_{2}	39.90	55.00	0.41	18.59	39.70	53.78	0.35	18.47
	BC_{1}	38.94	41.17	1.18	16.48	43.47	35.76	0.80	13.76
	BC_{2}	42.24	42.66	0.84	15.47	39.82	51.13	1.16	17.96
$\left\lvert\, \begin{gathered} 100 \text {-kernel } \\ \text { weight } \\ \text { (gm.) } \end{gathered}\right.$	P_{1}	26.33	2.67	0.44	6.20	25.17	10.17	1.69	12.67
	P_{2}	25.17	10.17	1.69	12.67	26.50	7.10	1.18	10.06
	F_{1}	34.83	2.17	0.36	4.23	36.17	4.57	0.76	5.91
	F_{2}	32.04	9.11	0.34	9.42	32.27	15.58	0.47	12.23
	BC_{1}	33.22	2.69	0.30	4.94	33.89	11.86	1.32	10.16
	BC_{2}	32.00	8.00	0.89	8.84	35.22	14.94	1.66	10.98

Table (1): Cont.

Traits	Population	Cross I ($\mathrm{M}_{4} \times \mathrm{M}_{39}$)				Cross II ($\mathbf{M}_{39} \mathbf{x} \mathbf{M}_{1}$)			
		$\overline{\mathrm{X}}$	$\sigma^{2} e$	$\sigma^{2} \overline{\mathrm{x}}$	C.V\%	$\overline{\mathrm{X}}$	$\sigma^{2} e$	$\sigma^{2} \overline{\mathrm{x}}$	C.V\%
No of ear/plant	P_{1}	1.09	0.02	0.003	13.14	1.04	0.01	0.002	9.79
	P_{2}	1.04	0.01	0.002	9.79	1.15	0.008	0.001	7.95
	F_{1}	1.36	0.002	0.0003	3.25	1.21	0.005	0.001	6.06
	F_{2}	1.27	0.06	0.002	18.52	1.14	0.02	0.0004	10.91
	BC_{1}	1.39	0.06	0.006	17.28	1.12	0.01	0.001	9.76
	BC_{2}	1.29	0.02	0.002	11.26	1.12	0.009	0.001	8.59
Plant height	P_{1}	245.17	137.04	4.57	4.77	183.08	358.15	13.78	10.34
	P_{2}	183.08	358.15	13.78	10.34	234.14	294.77	10.16	7.33
	F_{1}	295.22	220.18	8.16	5.03	307.59	166.10	6.15	4.19
	F_{2}	274.38	836.05	6.43	10.54	287.23	346.28	2.21	6.48
	BC_{1}	283.50	570.77	14.27	8.43	300.00	230.68	5.13	5.06
	BC_{2}	286.89	540.10	12.00	8.10	293.63	230.75	5.77	5.17
Ear height (cm)	P_{1}	120.50	33.36	1.11	4.79	84.23	137.38	5.28	13.92
	P_{2}	84.23	137.38	5.28	13.92	108.60	105.25	4.27	9.45
	F_{1}	142.22	119.87	4.44	7.70	182.31	292.46	11.25	9.38
	F_{2}	129.96	362.21	2.79	14.64	138.01	651.51	4.18	18.49
	BC_{1}	140.24	137.44	3.35	8.36	163.11	373.06	8.29	11.84
	BC_{2}	142.19	281.82	5.87	11.81	144.66	590.00	13.41	16.79
Tasseling date (days)	P_{1}	56.33	0.67	0.11	1.45	51.67	1.07	0.18	2.00
	P_{2}	51.67	1.07	0.18	2.00	56.00	1.20	0.20	1.96
	F_{1}	50.33	0.67	0.11	1.62	54.17	0.97	0.16	1.81
	F_{2}	50.19	1.16	0.04	2.14	55.85	2.63	0.08	2.91
	BC_{1}	50.22	1.19	0.13	2.18	54.89	1.61	0.18	2.31
	BC_{2}	51.33	0.75	0.08	1.69	54.67	1.25	0.14	2.05
Silking date (days)	P_{1}	61.17	0.57	0.09	1.23	55.33	0.67	0.11	1.48
	P_{2}	55.33	0.67	0.11	1.48	57.83	0.97	0.16	1.70
	F_{1}	54.67	0.27	0.04	0.94	57.33	0.67	0.11	1.42
	F_{2}	54.67	1.00	0.04	1.83	57.76	2.63	0.08	2.81
	BC_{1}	53.22	0.44	0.05	1.25	56.89	1.61	0.18	2.23
	BC_{2}	55.78	0.69	0.08	1.49	56.67	1.25	0.14	1.97

Heterotic effects, inbreeding depression, and potence ratio in the two crosses for all traits are presented in Table (2). Higher and highly significant heterosis was obtained for grain yield / plant, ear length, number of kernels / row, plant height and ear height in cross-II relative to mid and better parent ; number of rows / ear and number of ears / plant in cross-I relative to mid and better parent ; ear diameter and 100 - kernel weight in cross-I relative to mid parent ; ear diameter and 100 - kernel weight in cross-II relative to better parent. Highly significant and negative heterosis values were obtained for tasseling and silking dates in cross- I followed by cross -II relative to mid and better parent. The range of heterosis in cross - I was - 6.15% for silking date to 115.96% for grain yield / plant relative to mid parent, and -2.55% for silking date to 90.99% for grain yield / plant relative to better parent. Meanwhile, in cross - II it ranged from -1.85% for tasseling date to 133.60% for grain yield / plant relative to mid parent, while, it ranged from 3.61% for silking date to 114.16% for grain yield / plant relative to better parent.

Table (2) : Estimates of heterosis, inbreeding depression (I. D\%) and potence ratio (P) of crosses I and II for all studied traits.

Traits	Cross-I (M4 X M39)				Cross- II (M39 X M 1)			
	Heterosis		I. D \%	P	Heterosis		I D \%	P
	M.P	B.P			M. P.	B. P.		
Grain yield / plant	$115.96{ }^{* *}$	90.99**	20.54*	4.44	133.60**	114.16**	15.27	-7.36
Ear length	15.89**	$6.44 * *$	$2.32{ }^{* *}$	0.90	$30.46{ }^{* *}$	28.41**	$2.12{ }^{* *}$	-9.52
Ear diameter	$12.77^{* *}$	9.95**	$4.71{ }^{* *}$	-2.50	$11.41^{* *}$	$10.34{ }^{* *}$	$2.54 * *$	5.92
No. of rows /ear	$25.31^{* *}$	221.12**	$2.11{ }^{* *}$	4.83	$17.30 * *$	$5.73{ }^{* *}$	4.29**	-0.79
No. of kernels/ row	67.70**	30.60**	$12.32^{* *}$	1.19	72.53 **	39.39**	9.70**	-1.53
100. kernel weight	82.66**	$32.28{ }^{* *}$	8.03**	7.79	40.00**	36.48**	$10.77{ }^{* *}$	-7.75
No. of ears/ plant	$27.23{ }^{* *}$	$24.54{ }^{* *}$	$6.30{ }^{* *}$	6.30	$10.20 * *$	$5.24{ }^{\text {** }}$	$5.08{ }^{* *}$	-1.08
Plant height	$37.88{ }^{* *}$	$61.25{ }^{* *}$	7.06	1.31	$47.45{ }^{* *}$	$68.00^{* *}$	$6.62{ }^{*}$	-1.94
Ear height	$38.94{ }^{* *}$	$68.85{ }^{* *}$	$8.62{ }^{* *}$	1.10	$89.09{ }^{* *}$	$116.83{ }^{* *}$	24.30**	-3.52
Tasseling date	-6.79**	-2.55**	0.28	-0.79	-1.85**	4.83**	-3.10**	0.08
Silking date	-6.15**	-1.14**	6.09	-0.61	$1.28{ }^{* *}$	$3.61{ }^{* *}$	-0.74	-0.28

*,** Significant at 0.05 and 0.01 levels of probability, respectively.
Generally, higher heterosis percentage values were detected in the second cross ($\mathrm{M} 39 \times \mathrm{M}_{1}$) for most studied traits than those obtained from the first one (M4 x M39) for most studied traits including grain yield / plant and some of its components except number of rows / ear, number of ears / plant and tasseling and silking dates. Our results which concerned heterosis percentages for grain yield/plant were smaller than those calculated by Darrah and Hallauer (1972) in one set of diallel crosses. Mohamed (1979) obtained 443.54% and 376.9% heterosis values relative to mid and high parents, respectively. Meanwhile, our estimates of heterosis percentages for grain yield/ plant were similar with Gorgan and Francis (1972), Khalil (1999) and ElShamarka (1999) in cross-I only. On the other hand Nawar (1985a) obtained an average heterosis of two sets of diallel crosses relative to mid and high parent $35.30 \%, 15.60 \%$ and $15.60 \%, 44.30 \%$ respectively. Nawar et al., (1992b) obtained in one cross $29.05 \%, 30.52 \%$ and 30.10% at the three nitrogen levels 125, 200 and $300 \mathrm{~kg} \mathrm{~N} / \mathrm{ha}$, and 24.17%, 27.20\% and 21/41\% at the same nitrogen levels relative to mid and high parent, respectively. El Shamarka (1999) obtained in one cross 13.65%, and 11.55% relative to mid and high parent, respectively.

Significant and positive inbreeding depression values were obtained for most studied traits in the two crosses except grain yield/plant and tasseling date in cross-I; plant height and tasseling date in cross-II and silking date for the two crossses. Most values of inbreeding depression were higher for the first cross than those of the second one, particularly for grain yield and some of its components. Except for grain yield/plant and silking date at cross - II; plant height and tasseling and silking dates in cross-I, significant heterosis and inbreeding depression associated in all other traits (Table 2). This is logical since the expression of heterosis in F_{1} will be followed by considerable reduction in F_{2} performance. Results of the characters were in harmony with that have been previously detected by El-Hosary $(1981,1982)$ in field beans, El-Shamarka (1999) and Khalil (1999). Finally, conflicting estimates of
heterosis and inbreeding depression presented herein may be due to the presence of linkage disequalibrium between genes in the parental stock (Van der Veen, 1959).

Potence ratio values were less than unity in cross-l for ear length and tasseling and silking dates; and in cross-II for number of rows/ear and tasseling and silking dates indicating partial dominance range for these traits. Meanwhile, over dominance values or linkage were detected in remaining traits including grain yield/plant in the two crosses, hence, the values were more than unity.

Nature of gene action was also studied according to Gamble (1962) and the obtained values are given in Table (3). In all cases, the mean effect of parameters (m) was highly significant and values were higher in cross-II than their corresponding ones in cross-l except few cases i.e., number of kernels/row and number of ears/plant in cross-l. Significant positive additive effects were detected for number of kernels/row and ear height in cross- II, Significant positive dominance effects were detected for most traits except number of rows/ear, number of ears/plant and silking date in cross- II; and only for tasseling date in cross-l which showed non-significant effects. Significant negative values were obtained for tasseling date in the two crosses and for silking date in cross-I. Significant and positive additive x additive effects were obtained for most traits in cross-I including grain yield except number of kernels/row, 100-kernel weight, number of ears / plant, tasseling and silking dates; and for cross-II significant and positive values for number of kernels/row, 100-kernel weight, plant and ear heights; while significant and negative values were obtained for tasseling and silking dates, the remaining cases for this cross showed non-significant values. Significant and positive values of additive x dominance effects were obtained in cross- II for number of kernels / row, plant height and ear height; and for ear height in cross-I. On the other hand significant and negative values were detected in cross-I for number of kernels/row, plant height and tasseling and silking dates. Most values of dominance x dominance effects had highly significant negative values and less magnitude except number of rows/ear in cross-II; and number of kernels/row and silking date in cross-l

Table (3): Values of gene action of crosses I and II for all studied traits.

Traits	Cross - (M4 X M39)						Cross - II (M39 X M1)					
	Gene action						Gene action					
	m	a	d	aa	ad	dd	m	a	d	aa	ad	dd
Grain yield / plant	274.54**	-1.24	423.68**	$238.17{ }^{\text {* }}$	-19.68	-363.51"	302.75**	4.87	188.29**	-16.06	18.75	-158.37
Ear length	19.11"	-0.85	$6.40{ }^{*}$	$3.71{ }^{*}$	-2.35	-10.98"	19.97*	-0.55	4.84"	-0.07	-0.30	-7.94*
Ear diameter	$4.56{ }^{*}$	-0.10	$1.76{ }^{\text {" }}$	$1.21{ }^{\text {" }}$	0.01	-2.61**	$4.68{ }^{\text {" }}$	-0.11	$0.76{ }^{\text {* }}$	0.27	-0.15	-1.03*
No. of rows /ear	13.39**	0.03	$5.62{ }^{\text {¹ }}$	$2.85{ }^{*}$	-0.26	-10.08**	$13.40{ }^{\text {** }}$	0.42	3.27	1.20	1.73	$6.49{ }^{\text { }}$
No. of kernels/ row	39.90*	$-3.29{ }^{*}$	$21.14{ }^{* \prime}$	2.78	11.00**	19.87*	39.70*	3.65*	26.24 "	$7.76{ }^{*}$	9.71^{*}	-35.43"
100. kernel weight	32.04**	1.22	11.68*	2.30	0.64	-11.57*	$32.27{ }^{\prime \prime}$	-1.33	19.46**	9.13^{*}	-0.67	-23.35*
No. of ears/ plant	$1.27{ }^{*}$	0.10	$0.57{ }^{*}$	0.28	0.07	-0.81	$1.14{ }^{\text {" }}$	0.01	0.02	-0.10	0.06	0.21
Plant height	274.38*	-3.39	123.54"	43.24"	-34.43"	$165.33{ }^{\prime \prime}$	287.23**	6.38	137.32*	38.33"	31.91"	-193.18"
Ear height	$129.96{ }^{*}$	-1.94	84.88"	45.02"	20.08	-120.71"	138.01"	18.45	$149.38{ }^{\prime \prime}$	63.49	$30.64{ }^{\text {" }}$	-121.58*
Tasseling date	50.19**	-1.11*	-1.32	2.35	-3.44*	3.21	55.85**	0.22	-3.95**	-4.28*	1.94	1.17
Silking date	$54.67{ }^{\text {* }}$	-2.56*	-4.25**	-0.67	-5.47**	8.50*	57.76*	0.22	-3.19	-3.92*	1.50	4.69

*,** Significant at 0.05 and 0.01 levels of probability, respectively.

El-Absawy, E.A.

Generally, for grain yield/plant, dominance and epistatic type of gene action additive x additive were obtained in cross I. Meanwhile, in cross-II dominance gene effects had the major contributing factor in the performance of this trait. Our result was partially agreed with those detected by Nawar et al. (1992a) who reported that the dominance and epistasis (additive x additive) gene actions were more important in the inheritance of grain yield/plant. The same result was obtained by Gamble (1962), Nawar (1984,1985 a,b) Galal et al., (1987), Nawar et al., (1998), El-shamarka (1999) and Khalil (1999).

Heritability in broad and narrow senses and genetic advance as a percent of the F_{2} mean in the two crosses for all traits are presented in Table (4). For cross-I heritability values were ranged betwen 11.97% for number of rows/ear to 86.67% for grain yield/plant relative to narrow sense, and from 19.34% for number of rows/ear to 98.10% for ear diameter; for cross-II the data showed heritability values between 21.16% for plant height to 92.99% for grain yield/plant; and from 9.90% for number of rows/ear to 91.32% for tasseling date relative to narrow and broad senses.

Table (4): Values of heritability in the narrow and broad sense (h (n), $h(b)$) and the predicted genetic advance from selection ($\Delta \mathrm{g}, \Delta \mathrm{g} \%$) for crosses I and II for all studied traits.

Traits	Cross - I (M4 X M39)				Cross - II (M39 X M1)			
	Heritability		Predicted genetic advance		Heritability		Predicted genetic advance	
	h (n)	h (b)	$\Delta \mathrm{g}$	$\Delta \mathrm{g} \%$	h (n)	h(b)	$\Delta \mathrm{g}$	$\Delta \mathrm{g} \%$
Grain yield / plant	86.67	87.49	61.91	22.55	92.99	72.37	85.95	28.39
Ear length	70.34	48.85	1.45	7.60	75.52	46.14	1.41	7.04
Ear diameter	77.24	98.10	0.57	12.59	64.18	53.34	0.29	6.16
No. of rows /ear	11.97	19.34	0.72	5.38	29.47	9.90	0.40	2.95
No. of kernels /row	60.30	47.58	7.27	18.22	38.45	47.81	7.22	18.19
100. kernel weight	45.14	35.27	2.19	6.85	53.29	27.95	2.27	7.04
No. of ears/plant	80.26	57.32	0.28	21.87	48.80	63.81	0.16	14.35
Plant height	71.48	67.13	39.99	14.57	21.16	66.75	25.59	8.91
Ear height	73.25	84.25	33.03	25.42	72.62	52.18	27.44	19.88
Tasseling date	30.82	31.93	0.71	1.41	59.06	91.32	3.05	5.47
Silking date	49.99	86.20	1.78	3.25	70.81	91.09	3.04	5.27

*,** Significant at 0.05 and 0.01 levels of probability, respectively.
Generally, heritability values for grain yield/plant in the narrow sense reached $86.67 \%, 92.99 \%$ for cross-I and cross-II, respectively, and in cross-I and cross-II for broad sense were 87.49% and 72.37%, respectively. The higher estimates in the broad sense indicating the prevalent of dominance and epistatic effects in the inheritance of grain yield/plant. This result was confirmed by the finding of the potence ratios (Table 2), where over dominance effect play the major role in this concern. The present heritability values for grain yield/plant were higher than those reported by Hallauer and Miranda (1981). They reached to 18.70% for grain yield/plant also, Nawar et al. (1996) in SC_{10} obtained intermediate value of heritability in the narrow sense 23% for grain yield / plant. On the other hand our data were similar with
those obtained by Nawar et al. (1992a). They obtained an average heritability values 83.70% and 84.05% in cross-I ($\mathrm{M}_{1} \times \mathrm{MM}_{2}$) and cross-II ($\mathrm{M}_{3} \times \mathrm{M}_{7}$) respectively.

The expected genetic advance from selection in F_{2} for grain yield / plant was higher in cross - II (28.39\%) than in cross-I (22.55\%).Many researchers calculated the expected genetic advance from different methods of selection, beside heritability values to get more useful in predicting the resultant effect of selection than heritability values alone (Johanson et al., 1955) in soybean. Nawar et al. (1995) calculated the expected genetic advance from different methods of selection in maize population Giza-2.The higest valus from-full-sib family selection based on S_{1} and S_{2} (66.72 grams or $\Delta \mathrm{g} \% 32.93 \%$), and (87.0 grams or $\Delta \mathrm{g} \% 42.94 \%$) respectively. Also, Nawar et al., (1996) obtained 19.38% for grain yield/plant ($\Delta \mathrm{g} \%, 19.38 \%$) in SC_{10} with recurrent selection method. Khalil (1999) obtained ($\Delta \mathrm{g} \%$) 32.61 and 13.22\% for cross-I, and cross-II, respectively. Therefore, selection would be effective for superior genotypes may be used in maize breeding programmes and hybrid production.

REFERENCES

Darrah L. L, and A. R. Hallauer, (1972).Genetic effects estimated from generation means in four diallel sets of maize inbreds. Crop Sci., 12 : 615-621.
EL-Hosary, A. A., (1981). Genetical studies in field beans (Vicia faba, L.). Ph.D. Thesis, Fac. Agric., Minuf. Univ.
EL-Hosary, A. A., (1982). Genetical studies in field beans (Vicia faba L.). IIEarliness and some growth attributes. Egypt. J. Agron., 7(1): 11-23.
EL-Sharmarka Sh. A., (1999). Estimates of genetic effects of some quantitative attributes of maize (Zea mays, L.) Egypt. J. Plant Breed., 3: 101-113.
Galal, A. A.; F. A. El-Zeir and M.A.Younis, (1987). Estimation of general and specific combining ability in three sets of new inbreds of maize. J. Agric. Res. Tanta. Univ., 13: 983-996.
Gamble E. E., (1962). Gene effects in corn (Zea mays, L.). 1.Separation and relative importance of gene effects for yield. Can. J. Plant Sci., 42: 339 - 348.

Grogan., C.O., and C.A. Francis, (1972). Heterosis in inbred source crosses of maize (Zea mays, L.) Crop Sci., 12: 729-730.
Hallauer, A. R. and J.B. Miranda, (1981). Quantitative Genetics in Maize Breeding. Iowa state Univ. Press Ames . U. S.A.
Hayman, B. I., (1958). The separation of epistatic from additive and dominance variation in generation means, Heredity., 12: 371-390.
Hayman, B. I., (1960). The separation of epistatic from additive and dominance variation in generation means. II. Genetica XXXI : 133-146.
Johanson, H.W.; H.F. Robinson and R.E., Comstock, (1955). Estimation of gentic and environmental variability in soybeans. Agron. J., 47: 3145.
Khalil, A. N. M., (1999). Genetic effects estimated from generation means in
two maize crosses. Minuf. J. Agric res. Vol. 24,(6): 1911-1924.
Mather, K., (1949). Biometrical Genetics. Dover Publication, Inc. London.
Mohamed S. A. S., (1979). Genetic studies on corn (Zea mays, L.). M. Sc. Thesis, Fac. of Agric., Al- Azhar Univ. Egypt.
Nawar, A. A., (1984). Genetic analysis of earliness and combining ability in maize diallel crossing. Minuf. J. of Agric Res. p: 171-190.
Nawar, A. A., (1985a). Hybrid vigor and combining ability and their interaction with years in maize (Zea mays, L.). Minuf. J. of Agric. Res. 10: 115 131.

Nawar, A. A., (1985b). Diallel analysis of the combining ability of inbred lines and its utilization in breeding maize hybrids. Minuf. J. of Agric. Res., 10: 2015: 2027.
Nawar, A. A; S. A. El- Shamarka and A. N. M. Khalil, (1992a). Improvement of two maize populations among half and full-sib families. Minuf. J. Agric. Res. Vol. 17, (4): 1763-1772.
Nawar, A. A.; A. N. M. Khalil and S. A. El- Shamarka, (1992b). Heterosis and genetic effects of maize grain yield under three nitrogen fertilizer rates. Minuf. J. Agric. Res., 17(4): 1753-1762.
Nawar, A. A.; F. A. Hendawy; S. A. El- Shamarka and M. M. M. Asfour, (1995). Genetic variance components in Giza- 2 maize variety, Minuf. J. Agric Res., 2: 423-439.

Nawar, A. A.; A. A. Abul- Naas; A. M. Shehata and M. A. El- Ghonemy, (1996). Estimates of genetic variances, degree of dominance and their interaction with locations in single cross of maize. Journal of Agric. Sci. Mansoura Univ., 21 (12): 4261. 4273.
Nawar, A. A.; S. A. El-Shamarka; E. A. El-Absawy; M. E. Ibrahim and M. A. Shehata, (1998). Estimation of genetic variations in a maize poulation and their interaction with growing seasons. Minuf. J. Agric. Res., 23 (6): 1509-1530.
Sprague G. F. and K. Suwantaradon, (1975). A generation mean analysis of mutants derived from doubled monoploid family in maize Acta. Biol., 7: 325-332.
Van der Veen., J. H, (1959). Test of nonallelic interaction and linkage for quantitative characters in generations derived from two diploid pure lines. Genetics., 30: 201-232.

دراسات وراثية علي هجينين من الذرة الثـامية اللسيد عبد الخالق أحمد العبساوى
 \section*{معهذ بحوث الهندسة الور اثية والتكنولوجيا الحيوية - جامعة المنوفية}

 والهجين الرجعى الثانى لكل منهما، وتم أخذ القياسات على احدى عشرة صفة كمية هى:

 الستّة و المقترحة من قبل جامبل 1974 ا 1 ور وكانت النتائج كالتالى:
 المتوسط وقيم النباين الور اثثى ماعدا صفتى عدد الكيزان على النبات وارتفاع النبات.

 مكوناتها.

 النبات الفردى من الحبوب حيث كانت درجة السيادة أعلى من الوحدة.

 النوع اللسيادى من فعل الجين هو اللتحكم فى ور اثنة هذه الصفة فى الهجين الثانى.
 \% 9 个, 99 ، \% \% 7 , 7V

