EFFECTS OF INBREEDING ON SOME GIZA 20 ONION BULB CHARACTERS.

Gamie, A.A.; Aida B. Hanna; Aida E. El-Gamili and F.A. Ahmed Onion Research Section, Field Crops Research Institute, Agriculture Research Center.

ABSTRACT

This work was carried out at Shandweel Experiment Station, Sohag, Gvernorate from 1998 to 2000 to investigate the effect of inbreeding on some onion bulb characters in the second generation (S_2) of "Giza 20" cultivar.

Percentage of single growing point and single center bulbs were increased by inbreeding in the second generation while, internal and external doubles, mean bulb weight, bolters and culls were decreased.

Predicted gain was more than realized for the single growing point and single center bulb characters while, realized gain was more than predicted in internal and external doubles, bolters, mean bulb weight and culls in S₂ populations.

INTRODUCTION

Onion (*Allium cepa*, L.) is one of the most important vegetable crops in Egypt. Exports to Europe were considerably decreased. Reasons for this include bulb quality. Internal doubling is an important bulb aspect.

Internal doubling in onions was found by Shalaby (1966) to be controlled by several genes and relatively high heritability.

Abd El-Hafez *et al.* (1976) studies carried out on 12 onion cultivars, show that Behairy had maximum growing points while, "Yellow Bermuda Ecell 986", "Texas Yellow Gerano" and "New Maxico Early Grano" had the in least.

Dowker and Fennall (1981) compared five open-pollinated populations with three inbreds of onion all descending from Rijnsburger at five localities. They found that all the open-pollinated populations gave higher yields than inbreds, while inbreds had less doubles than open pollinated populations.

Hanna (1987) tested 6 varieties of onion, namly, Giza 6 Mohassan, Giza 20, kerdasy (a local strain), Puss B.p.r.r., Bethalpha and Extra Early Yellow Bermuda for the number of growing points. The range was from 1.43 in "Kerdasy" onion to 1.83 in "Extra Early Yellow Bermuda".

Shalaby *et al.* (1991) reported that after two cycles of mass selection, onion bulb crop grown from sets was improved in single-center bulbs,

marketable and exportable yields, but internal, external doubling, bolters, weight of bulb, total and culls yields were significantly decreased.

Abd El-Rehim *et al.* (1996) found that "Giza 20" was significantly increased in bulbs with single growing points, single center bulbs, marketable and exportable yields, while internal and external doubling, bolters, average bulb weight, total and culls yields were decreased. Predicted gain due to selection was more than realized in all selected populations and for all studied characters.

MATERIALS AND METHODS

This work was conducted at Shandweel Research Station with loam clay soil using the onion cultivar "Giza 20" .

In November 1998 (at the end of bulb storage period) out of S_1 massed "Giza 20" generation, 969 apperantly single bulbs were halfway horizontaly sectioned. Out of these only 54 bulbs with single growing point were selected, i.e., the intensity of selection was 5.57%. The 54 selected bulbs were planted under an isolation lumite cage and left to inter-pollinate using honey bee insects during flowering. One umbel from each plant was selfed. In May, 1999, selfed seeds were collected and mixed to produce full and half sibs. In September 1999, 2nd selection cycle full and half sibs along with S₀ commercial "Giza 20" were sown in a seed bed. In November 1999, seedlings were transplanted in randomized complete block design with four replications. Plot size was 2x3 m (1/700 faddan). Each plot consisted of 10 rows 3m long. Transplants were spaced 7 cm apart. Normal cultural practices of growing onion bulb crop were followed. Plants were pulled when about 75 percent of plant tops had fallen down. Results were recorded in April, 2000 for the following characters.

- Percentage of bulbs with a single growing point in marketable yield.
- Percentage of bulbs with a single center (bulbs with one center which contains one or more growing points).
- Percentage of internal doubles (bulbs with one or more centers).
- Percentage of external doubles and splits.
- Percentage of bolters.
- Mean bulb weight (gm).
- Total yield (t/f).
- Marketable yield (t/f).
- Exportable yield t/f (bulbs 3-6 cm in diameter and free from culls).
- Culls yield, i.e., doubles, bolters and scallions(t/f).

Data were statistically analysed using F-test. Means were compared using the L.S.D method and the coefficient of variability (c.v %) was calculated according to Snedecor and Cochran (1967). Expected genetic advance was calculated according to Miller (1958). The difference between expected and realized genetic advance was calculated according to Pesek and Baker (1970).

RESULTS AND DISCUSSION

Mean percentage and coefficient of variability (c.v %) of some bulb characters of S₀ "Giza 20" original, full and half sibs are presented in Table (1) and Fig. (1). It is clear that the percentage of single growing point and single center bulbs were significantly increased. It reached 16.86% and 57.40% in the second cycle of selection, while, they were 0.33% and 3.21% in the S₀ original, respectively (Table 1).

Internal and external doubles, bolters and mean bulb weight were significantly decreased by inbreeding. Internal doubles were decreased from 89.57% in the S_0 original to 23.92% in the 2^{nd} selection cycle population (Fig 1). External doubles were 5.21% in the S_0 original and reached 2.05% and 1.61% in full and half sibs, respectively. Bolters were decreased from 1.67% in the S_0 original population to 0.20% in the 2^{nd} cycle. Bulb weight was 94.49 gm in S_0 original and reached 67.86 gm in the 2^{nd} selection cycle (Table 1).

Table 1: Mean percentage and coefficient of variability (c.v. %) for some bulb characters of "Giza 20" onion in the S₀ original, second cycle bulk and second cycle selfed populations.

			L.S.D			
		S₀	2 nd cucle	2 nd cycle	0.05*	0.01**
Characters		original	bulk fu	ull & half sibs		
Single growing point	Mean	1.25	41.75	62.75	16.11	24.48
	percentage	0.33	11.19	16.86	5.67	8.58
Coefficient of variability	(c.v. %)	16.19	7.84	5.22		
Single center bulbs	Mean	12.00	192.21	214.10	54.00	81.80
	percentage	3.21	51.53	57.40	14.09	21.34
Coefficient of variability	(c.v. %)	8.24	6.96	5.84		
Internal doubles	Mean	335.0	130.04	89.40	43.24	65.50
	percentage	89.57	34.88	23.92	12.47	18.89
Coefficient of variability	(c.v. %)	4.92	3.91	2.15		
External doubles	Mean	19.50	7.65	6.00	1.69	2.55
	percentage	5.21	2.05	1.61	2.21	N.S
Coefficient of variability	(c.v. %)	21.34	16.01	6.57		
Bolters	Mean	6.25	1.25	0.75	3.51	N.S
	percentage	1.67	0.34	0.20	0.98	N.S
Coefficient of variability	(c.v. %)	29.05	27.25	25.42		
Bulb weight	Mean	94.49	80.06	67.86	24.58	N.S
Coefficient of variability	(c.v. %)	11.31	9.59	8.12		

*,** = Significant at 0.05 and 0.01 levels of prpbability.

N.S = Not significant.

The coefficient of variability (c.v %) for bulbs of S_0 original, full and half sibs, appear in Table (2) and Fig (2). It is clear that total , marketable and exportable yield were not significantly affected by inbreeding (Table 2). Culls were significantly decreased by inbreeding from 5.06 t/f in the S_0 original to 1.56 t/f in full sibs (Fig 2).

Results in Tables (1 and 2) show that the second inbreeding generation effectively improved some bulb characters and yield, i.e., single growing point, single center bulbs, internal, external doubles and culls. This result agree with those obtained by Hanna (1987), Dowker and Fennell (1988), Shalaby *et al.* (1991) and Abd El-Rehim *et al.* (1996), who indicated increases in single center bulbs, bulbs with a single growing point, while internal and external doubles, total and culls yields were decreased.

The efficiency of inbreeding in improving some bulb characters and yield were measured as predicted and realized responses (Tables 3 and 4). Calculation were made on the assumption that selection of the superior 5.57% in the first generation bulb population was effective.

The differences between predicted and realized responses were significant in all bulb characters in the second generation, bulk and selfed populations, except for total, marketable and exportable yield which were not significant, Tables (3 and 4).

It is also noticed that the predicted responses due to inbreeding were greater than the realized in the single growing point and single center bulbs in full and half sibs.

This result was similarity to that of Abd EI-Rhim *et al.* (1996) who showed that the predicted responses were greater than realized for most of all studied characters.

Table	2:	Mean	and	coefficient	of	variability	(c.v	%)	for	bulbs	yield	of
		"Giza	a 20"	onion in th	ie S	original,	seco	nd s	seleo	ction c	ycle, t	full
		and I	half s	ibs.		_					-	

			Pedigree				
		S ₀	2 nd cucle	2 nd cycle	0.05*	0.01**	
Characters		original	bulk	selfed			
Total yield	Mean (t/f)	18.45	16.92	16.15	N.S	N.S	
Coefficient of variability	(c.v. %)	14.84	13.85	13.63			
Marketable yield	Mean (t/f)	13.39	14.74	14.59	N.S	N.S	
Coefficient of variability	(c.v. %)	16.21	16.04	15.36			
Exportable yield	Mean (t/f)	12.63	14.01	13.52	N.S	N.S	
Coefficient of variability	(c.v. %)	16.13	15.03	14.91			
Culls bulb	Mean (t/f)	5.06	2.18	1.56	1.19*	1.80*	
Coefficient of variability	(c.v %)	32.70	15.69	13.39			

*,** = Significant at 0.05 and 0.01 levels of prpbability.

N.S = Not significant.

Fig. 2. Yield components in the S_0 (original), 2^{nd} selection cycle , full and half sibs in 1999 and 2000.

Table	3: Predicted	and realized	l genetic	advance c	due to	inbreeding	for some
	bulb char	acters of "Gi	za 20" on	ion in seco	ond cyc	le full and h	alf sibs

Character		Predicted %		Real	ized %	D		
Character	:	2 nd cycle half sibs	2 nd cycle full sibs	2 nd cycle half sibs	2 nd cycle full sibs	2 nd cycle half sibs	2 nd cycle full sibs	
Bulbs with a Single growing point	Mean	122.75	186.83	41.75	62.75	81.00*	124.1*	
	%	32.90	50.09	11.19	16.86	21.72*	33.23*	
Single center bulbs	Mean	263.03	295.00	192.21	214.10	70.82*	80.90*	
	%	70.52	79.09	51.53	57.40	18.98*	21.69*	
Internal doubles	Mean	88.12	60.56	130.04	89.40	-41.92*	-28.84*	
	%	23.62	16.24	34.88	23.92	-11.26*	-7.68*	
External doubles	Mean	5.52	3.91	7.65	6.00	-1.79*	-2.09*	
	%	1.47	0.95	2.05	1.61	-0.57*	-0.66*	
Bolters	Mean	0.09	-0.53	1.25	0.75	-1.16*	-1.28*	
	%	0.04	-0.13	0.34	0.20	0.30*	-0.33*	
Bulb weight	Mean gm	79.00	65.92	80.06	67.86	-1.06*	-1.94*	

The difference between predicted and realized responses.Significant at 0.05 level of probability. D *

N.S = Not Significant.

Table 4: Predicted and realized genetic advance due to inbreeding for bulbsyield of " Giza 20" onion in 2nd selection cycle full and half sibs in the1999/2000.

	Predi	Predicted %		ized %	D	
Character	2 nd cycle half sibs	2 nd cycle full sibs	2 nd cycle half sibs	2 nd cycle full sibs	2 nd cycle half sibs	2 nd cycle full sibs
Total yield	Mean (t/f) 16.90	16.12	16.92	16.15	-0.02	-0.03
Marketable yield	Mean (t/f) 14.77	14.62	14.74	14.59	0.03	0.03
Exportable yield	Mean (t/f) 14.03	13.53	14.01	13.52	0.02	0.01
Culls	Mean (t/f) 1.87	1.19	2.18	1.56	-0.31*	-0.37*

= The difference between predicted and realized responses. D

= Significant at 0.05 level of probability.

N.S = Not Significant.

REFERENCES

- Abd El-Hafez, A.A., M.W. El-Shafie; W.A. Warid and A.K. El-Kafouvy (1976). Performance of some onion cultivars with respect to number of growing point, total soluble solids and number of entire rings. Agric. Res. Rev., 54: 107-114.
- Abd El-Rehim, G.H.; G.I. Shalaby, F.A. Ahmed; A.A. Gamie and E.A. Waly (1996). Effect of mass selection on some bulb characters of onion variety "Giza 20". Egypt J. Apple. Sci., 11(4): 145 - 156.
- Dowker, B.D. and J.F. M. Fennell (1981). The relative performance of inbreds and open-pollinated populations of spring-sown onion. J. Agric. Sci. UK, 97 (1): 25-30. (C.F. Plant breeding Abst. 52 No. 3379).
- Hanna, A.B. (1987). Genetic studies on onion (*Allium Cepa*, L.). M. Sc. Fac. Agric. Moshtohor, Zagazig Univ, Egypt.
- Miller, P.A., J.C. Williams, H.F Robinson and R.E. Comstock. (1958). Estimates of genotypic and environment variances and covariances in Upland and their implications in selection. Agron. J., 50: 126-131.
- Pesek, J. and R.J. Baker. (1970). An application of index selection to the improvement of self-pollinated species. Can. J. Sci., 50: 267-276.
- Shalaby, G.I. (1966). Genetic and environmental factors affecting internal doubling in onions, (*Allium cepa*, L.) Ph. D. Thesis, Univ. Wisconsin. USA.
- Shalaby, G.I. A.I. El-Murabaa, N.M. Kandeel and A.A. Gamie (1991). Effect of mass selection on onion bulb production grown by sets. Assuit J. Agric. Sci. 22 (4): 189-200.
- Sndecor, W.G., and G.W. Cochran (1967). Statistical methods. 6 th ed. The Iowa State Univ. press 593pp.

تأثير التربية الذاتية على بعض الصفات فى البصل جيزة ٢٠ . عبد النعم عباس جامع، عايده بطرس حنا، عايده السيد الجميلى، فتحى عبد الجابر أحمد قسم بحوث البصل – معهد المحاصيل الحقلية – مركز البحوث الزراعية

أجرى هذا البحث بمحطة البحوث الزراعية بجزيرة شندويل – سوهاج – فى الفترة من ١٩٩٨ حتى ٢٠٠٠م لدراسة تأثير التربية الذاتية على بعض صفات البصل جيزة ٢٠ حيث أخذت أبصال الجيل الأول ناتج التلقيح الذاتى وأنتجت أبصال وحيدة البرعم وأبصال وحيدة القمة بعد تقطيعها وأجرى لها تلقيح ذاتى كلاً على حده وأختبر نسلها حيث إتضح بالجيل الثانى ما يلى :

- زادت النسبة المئوية للأبصال وحيدة البرعم والأبصال ذات القمة الواحدة المحتوية على أكثر من برعم زيادة معنوية. كما نقصت النسبة المئوية للأبصال المزدوجة داخلياً ووزن البصلة والبصل النقضه في الجيل الثاني من التربية الذاتية.
- لم يتأثر المحصول الكلى والقابل للتسويق و للتصدير والنسبة المئوية للحنبوط معنوياً بالتربية الذاتية.
- الإستجابة المتوقعة للتربية الذاتية أعلى من الإستجابة الفعلية لصفتى الأبصال ذات البرعم الواحد والأبصال ذات القمة الواحدة فى الجيل الثاني.
- · الفرق بين الإستجابة المتوقعة والفعلية كان معنوياً لكل الصفات تحت الدراسة ما عدا الصفات المتوقعة والفعلية كان معنوياً لكل الصفات