GENETICAL AND CHEMICAL STUDIES ON PUMPKINS (Cucurbita moshata).
Abd El-Rahman, M.M.; A.A. Kamooh and M.E. Abou El-Nasr
Agric. Res. Center, Hort. Res. Institute, Ministry of Agriculture

Abstract

Two pumpkin varieties namely, Balady and White Libi were crossed. Parents, F_{1}, F_{2} and backcrosses were used in this study. Mode of inheritance, nature of gene action, heritability and number of effective genes were estimated. The results showed that fruit weight was quantitatively inherited and over dominance was existed. Broad sense heritability was 32.7%, while narrow sense heritability was 29.4% and from one to three pairs of genes control this character. As for fruit shape index, a dominance to round fruit was existed and one pair of genes control the character. Broad sense heritability was 67.2%, while in narrow sense heritability was 138%. The results of chemical composition indicated that the fruit's rind was higher in protein and lipids than the flesh. The cultivar Libi was higher than the Balady in carbohydrate, protein and lipids. The F_{1} showed the highest level of carbohydrates, while the backcross to Libi gave the highest level of protein and F_{2} was higher in lipids.

INTRODUCTION

Genetic information on pumpkin could be obtained from wide intervarietal crosses, which need to be available before proceeding with the formulation of appropriate breeding strategies to develop and improve fruit quality. Hussain et al. (1974) showed that the watermelon cross between Clondike striped x Sugar baby gave the best improvement in fruit weight over mid parental values and superior parent.

Brar and Nandpuri (1975) studied the parents, $\mathrm{F}_{1}, \mathrm{~F}_{2}, \mathrm{BC}_{1}$ and BC_{2} of three watermelon crosses. Average fruit weight showed considerable heterosis and partial dominance for high fruit weight in two crosses and over dominance in the third.

Warid and Abd El-Hafez (1976) stated that the segregation in the F_{2} for watermelon. Cross Congo x Yellow skin was 1 elongate : 2 semi-elongate : 1 spherical. This character was controlled by one pair of genes.

Abd El-Hafez (1983) found all types of dominance in various F_{1} hybrids from different combinations of eight watermelon cultivars. As for fruit shape, he mentioned that low shape x high shape index produced F_{1} fruit of low shape.

Janakiram et al. (1992) in their studies on heterosis for quantitative characters in bottle gourd (Lagenaria siceraria) found significant heterosis over the better parent for 8 characters. The best performing hybrid for yield showed 58.1% heterosis over better parent.

Jaiswal et al. (1990) evaluated seven cultivars of bittergourd for protein, carbohydrate and vitamin C content. They found that the fruits of the cultivar Priya contained 2.32% protein, 8.07% carbohydrate and 112.2

Abd El-Rahman, M.M et al.

$\mathrm{mg} / 100 \mathrm{gm}$ vitamin C . They mentioned that a large variation was found in the chemical composition between the seven cultivars, suggesting that there is scope for M. charantia breeding for high yield and nutritive value.

Rao et al. (1990) mentioned that cucurbita maxima contained 1.27\% lipids and 2.83% proteins. Lipids classes were separated by silicic acid column chromatography and quantified. Therefore, the object of this work was to study the genetic behaviour of some economic fruit characters of pumpkin.

MATERIALS AND METHODS

The study was carried out at El-Baramon Horticulture Station during three summer successive seasons, 1996, 1997 and 1998. A pure lines for six generations, from the cultivars improved and distributed by Vegetable Research Department. White Libi (P_{1}) and Balady (P_{2}) were used in this investigation. In 1996, crosses were made between White Libi and Balady pumpkin cultivars. The P_{1}, P_{2} and F_{1} seeds were cultivated on March 1997, selfing and backcross to both parents were made. The parents, $\mathrm{F}_{1}, \mathrm{~F}_{2}, \mathrm{BC}_{1}$ and BC_{2} seeds were sown on March 1998. A randomized complete block design with a single row plot with four replicates for each of parents and F_{1} 's population was performed. Twenty five replicates with one row for F_{2}, and ten replicates for BC_{1} and BC_{2} populations were used. The plot consisted of one row 4.0 meters long and 2.5 m . width, the spacing between plants was one meter. Cultural practices were carried out as recommended for this crop. The fruits were harvested at mature stage.

The recorded data were as follows:

a. Inheritance of fruit weight and fruit shape:

All harvested fruits obtained from the different genotypes were weighed and average fruit weight was calculated in Kg . by dividing the total weight on the fruits number. For quantitative characters, the phenotypic variance of segregated populations was partitioned into environmental and genetic components. The variance, of the two parents, F_{1} generation provided the estimate of the environmental variance (Allard, 1960). The inheritable variance was devided into additive or fixable component "D" and dominance or non-fixable component "H". The F_{2} variance was expressed as:

The summed variance of the backcrosses was expressed as:-

Where:
$\mathrm{D}=$ Additive or fixable component.
$\mathrm{H}=$ Dominance or non-fixable component.
$\mathrm{E}=$ Environmental component.
The additive component was obtained by substituting the sum of backcrosses variance from $2 \mathrm{VF}_{2}$ as follows:-

$$
2 \mathrm{VF}_{2}-\left(\mathrm{VBC}_{1}+\mathrm{VBC}_{2}\right)=(\mathrm{D}+1 / 2 \mathrm{H}+2 \mathrm{E})-(1 / 2 \mathrm{D}+1 / 2 \mathrm{H}+2 \mathrm{E})=1 / 2 \mathrm{D}
$$

The dominance component (H) was obtained by subtracting the estimate of the additive component " D " in the formula for F_{2} variance (Allard, 1960).

1. Degree and nature of dominance:

The procedure used to estimate the degree of dominance was as follows:-

This is considered as a measure of relative potency of gene set (Smith, 1952).

Whereas:
$\mathrm{F}_{1}=$ First generation mean.
$P_{1}=$ The mean of the smaller parent.
$P_{2}=$ The mean of the large parent.
M.P. = Mid parent value.

Relative potency of gene (P) was used to determine the nature of dominance and its direction, according to the formula given by Smith (1952), where:
1- When the difference between the parents was significant and
($\bar{F}_{1}-\overline{\text { M.P. }}$) was not significant the absence of dominance was indicated.
Complete dominance is considered when potence ratio is equal or did not differ significantly from ± 1.

Partial dominance is considered when potence ratio is between 0.1 and 1.0 but not equal to zero.

Over dominance (Heterosis) is considered if potence ratio exceeds ± 1.0.

2. Heterosis:

Two measurements of heterosis, i.e. superiority of F_{1} over mid parent $\left(\mathrm{H}_{1}\right)$, and superiority of F_{1} over the better parent $\left(\mathrm{H}_{2}\right)$ were calculated using the formula reported by Ghaderi and Lower (1979) as follows:-

$$
H_{1}=100 \text { (} F_{1}-------------
$$

Abd EI-Rahman, M.M et al.

M

Where: M is the mean of the two parents and P_{1} is the mean of the better parent. H_{2} was estimated only for those traits which showed over dominance.

3. Heritability:

a. Heritability in broad sense was estimated using the formula reported by Burton (1951) as follows:-

$$
\mathrm{H}_{\mathrm{b}}^{2}=---------------\quad \times 100
$$

Where:
$\mathrm{H}^{2} \mathrm{~b}=$ Broad sense heritability.
$V F_{2}=$ Variance of F_{2} generation .
$V F_{1}=$ Variance of F_{1} generation.
b. Narrow sense heritability ($\mathrm{H}^{2} \mathrm{n}$) was estimated using Warner (1952) equation as follows:-

$$
\left.\mathrm{h}^{2} \mathrm{n}=---------------------------\quad \mathrm{VF}_{2}\right) \times 100
$$

Where:-
$\mathrm{H}^{2}{ }_{n}=$ Narrow sense heritability.
$V F_{2}=$ Variance of F_{2} generation .
$V F_{1}=$ Variance of F_{1} generation .
$V B C_{1}=$ Variance of backcross population to first parent.
$\mathrm{VBC}_{2}=$ Variance of backcross population to second parent.
The number of effective factors controlling the measured trait were calculate using:
a. Weber's modified by Castle Wright Formula (1951).

Where:-
$\mathrm{N}=$ Number of effective factors.
b. The Wright formula (Wright, 1921):

$$
\left.N=------------------h^{2}\right) D^{2}
$$

Where:-

$$
\begin{aligned}
& \mathrm{h}= \overline{\mathrm{F}}_{1}--\overline{\mathrm{P}}_{1} \\
&------- \\
& \mathrm{P}_{2}-\mathrm{P}_{1} \\
& \mathrm{D}=-\overline{-}-\mathrm{P}_{2}-\mathrm{P}_{1}
\end{aligned}
$$

$\overline{\mathrm{P}}_{1}=$ Mean of the smaller parent.
$\mathrm{P}_{2}=$ Mean of the larger parent.
$F_{1}=$ Mean of the F_{1} generation .
$S^{2} F_{1}=$ Variance of the F_{1} generation.
$S^{2} \mathrm{~F}_{2}=$ Variance of the F_{2} generation.
c. Saki and Niles (1959):

$$
\begin{aligned}
& N\left.\left.=-------P_{1}-P_{2}\right) / 2\right]^{2} \\
& 2 \sigma^{2} g \\
& \sigma^{2} g=V F_{2}------- \\
& V F_{1} \quad \text { (genetic variance). }
\end{aligned}
$$

b. Chemical composition:

The following compounds were determined in a sample of 8 fruits for every genotypes.

1. Total carbohydrates:

Total carbohydrates content was determined in skin and flesh for the parents and the populations according to the method of Montgomery (1961).

2. Total protein:

Total protein was determined according to the method of A.O.A.C. (1980).
3. Total lipids:

Total lipids were determined according to the method of A.O.A.C. (1980).

RESULTS AND DISCUSSION

A.1. Average fruit weight:

Abd El-Rahman, M.M et al.

The frequency distribution of the average fruit weight per plant for the $P_{1}, P_{2}, F_{1}, F_{2}, B C_{1}$ and $B C_{2}$ generations is presented in Table (1). The F_{2} fruits occupied all classes and the continous distribution curve for it (Fig. 1) indicates that this character inherited quantitively.

Regarding nature of dominance, it is obvious from Table (1) that the F_{1} mean was 4.23 kg and the mid parent was 3.22 kg . Results of backcrosses show that $B C_{1}$ was 3.97 kg and BC_{2} was 3.35 kg . These obtained results suggested a case of over dominance. Another evidence of over dominance can be noticed from Table (2), where the potency ratio was 4.12. A case of over dominance for average fruit weight was previously reported by Hussain et al. (1974) and Brar and Nandpuri (1975) in watermelon. Number of effective factors conditioning the average fruit weight character was found to be 0.227 by Wright formula, 2.178 by Burton and 0.227 by Sakai and Niles (1959). This indicated that the minimum number of genes controlling this character was estimated as 1-3 pairs of genes.

The value of heritability was 32.66% in broad sense compared with 29.36% in narrow sense, this could be attributed to that most of the genetic variance was additive or fexable component.

Estimating heterosis, it was found to be $\left(\mathrm{H}_{1}=31.36 \%\right)$ and $\left(\mathrm{H}_{2}=\right.$ 22.25%) by the formula of Ghaderi and Lower (1979).

A.2. Fruit shape:

The shape index is the ratio of the polar diameter by transverse diameter of the fruit. The frequency distribution of the fruit shape index for the $P_{1}, P_{2}, F_{1}, F_{2}, B C_{1}$ and $B C_{2}$ is presented in Table (3) and Fig. (2). The mean of F_{1} population was 0.86 which lied near the round parent (0.93), suggesting dominance of round fruit. The number of effective factors conditioning the fruit shape character was found to be 0.156 by Wright's formula, 0.366 by Burton formula and 0.156 by Sakai and Niles method. This result indicated that this character controlled by one pair of genes. The result was in agreement with that of Warid and Abd El-Hafez (1976).

The value of heritability was 67.2% in broad sense and 138% in narrow sense heritability (Table 4).
J. Agric. Sci. Mansoura Univ., 25 (2), February, 2000.

Table 2. Dominance, number of effective factors, heritability and heterosis for fruit weight (kg) in the cross Libi x Balady pumpkins.

Statistic	Estimation values Libi x Balady
Dominance:	
\quad Potence ratio	4.12
Number of effective factors:	
\quad Wright formula	0.227
Burton formula	2.178
Sakai and Niles method	0.227
Heritability:	
\quad Broad sense heritability (Alard, 1960)	32.664%
\quad Narrow sense heritability (Warner, 1952)	29.356%
Heterosis:	
H_{1}	31.36%
H_{2}	22.25%

$\rightarrow-\mathrm{P} 1-\mathrm{P} 2$ - $-\mathrm{F} 1 \cdots \cdot \mathrm{~F} 2$

Fig. 1. Frequency distribution of fruit weight for P_{1}, P_{2}, F_{1} and F_{2} of the cross Libi x Balady.
J. Agric. Sci. Mansoura Univ., 25 (2), February, 2000.

Table 4. Dominance, heritability and number of effective factors, and for fruit shape index in the cross Libi x Balady pumpkins.

Statistic	Estimation values Libi x Balady
Dominance:	1.68
Potence ratio	0.156
Number of effective factors:	0.366
Wright formula	0.156
Burton formula	
Sakai and Niles method	67.164%
Heritability:	138.806%
Broad sense heritability (Burton, 1951)	
Narrow sense heritability (Warner, 1952)	

$$
\rightarrow-\mathrm{P}_{1}-\square-\mathrm{P}_{2} \rightarrow-\mathrm{F}_{1} \cdots \mathrm{X} \cdot \mathrm{~F}_{2}
$$

Fig. 2. Frequency distribution on fruit shape index for for $\mathbf{P}_{1}, \mathbf{P}_{2}, F_{1}$ and F_{2} of the cross Libi x Balady.

B. Chemical composition:

Total carbohydrates protein and lipids were estimated in pumpkin's flesh and rind for the two parents, $\mathrm{F}_{1}, \mathrm{~F}_{2}, \mathrm{BC}_{1}$ and BC_{2}. Results are shown in Table (5) and Fig. (3). It is clear that the fruit's rind are rich in protein and lipids than the flesh in all the population. The flesh was higher in carbohydrate content for parents and F_{1}. The F_{1} showed a significant difference in its carbohydrate contents than the two parents and the backcrosses, which gave $17.116 \mathrm{gm} / 100 \mathrm{gm}$ fresh flesh, while P_{1} and P_{2}
gave 16.661 and 16.060 gm, respectively. As for protein, the Libi cultivar showed the highest content (1.477gm) than Balady, $\mathrm{F}_{1}, \mathrm{~F}_{2}$, and BC_{2}. On the other hand, backcross to Libi gave the highest protein content (1.694 gm $/ 100 \mathrm{gram})$. The total lipids in Libi cultivar was higher than the Balady, F_{1}, and BC_{1} with a significant difference between them. The F_{2} gave the highest lipids contents.

Table 5. Total carbohydrate, protein and total lipids in the rind and flesh pumpkin for the $P_{1}, P_{2}, F_{1}, F_{2}, B C_{1}$ and $B C_{2}$ population (gm/100gm).

Population	Total carbohydrate		Total protein		Total lipids	
	Rind	Flesh	Rind	Flesh	Rind	Flesh
P_{1}	14.030	16.661	2.310	1.477	1.540	0.395
P_{2}	14.854	16.060	2.340	1.028	2.190	0.371
$\mathrm{~F}_{1}$	15.330	17.116	1.610	0.882	1.950	0.294
$\mathrm{~F}_{2}$	15.560	15.150	1.660	1.389	1.950	0.546
BC_{1}	14.840	14.158	2.670	1.694	1.410	0.305
BC_{2}	14.430	14.921	2.350	1.220	2.160	0.455
L.S.D.						
	0.05	0.117	0.026	0.065	0.070	0.111
0.01	0.166	0.037	0.092	0.100	0.158	0.008

From the mentioned results it can be concluded that the pumpkins rind and flesh are rich in carbohydrate, protein and lipids. Breeding programe cam improve the quality of the Balady cultivar through producing hybrids or selection especially fruit quality and nutritive value.

The results of chemical composition are in agreement with that of Rao et al. (1990). Jaiswal et al. (1990) mentioned that bittergourd fruit contained 2.32% protein and 8.07% carbohydrate. They mentioned also that breeding can improve the cultivars for yield and nutritive value.

Generally, it could be concluded that improvement of Balady pumpkin fruits can be obtained through crossing between this cultivar and The White Libi cultivar.

Fig. 3. Total carbohydrate, protein and total lipids (gm/100gm) in the rind and flesh pumpkins for P_{1}, P_{2}, F_{1} and F_{2}

REFERENCES

Abd El-Hafez, A.A. (1983). Types of dominance of fruit characteristics in various F_{1} hybrids in watermelon, Citrulus lanatus, Thunb. Acta Agronomica Academiae Scientiarum Hungaricae, 32(1/2):107-114.
Allard, R.W. (1960). Principles of Plant Breeding. John Willey and Sons. Inc., New York.
A.O.A.C. (1980). Official Methods of Analysis of the Association of Official Agricultural Chemists. 13th Ed.
Brar, J.S. and K.S. Nandpuri (1975). Inheritance of T.S.S., fruit shape, yield and its components in watermelon (Citrulus lanatus, Thunb.). 711 Dept. Hort. Punjab Agric. Univ. Ludhina, India. (C.F. Plant Breed. Abst., 46:9573).
Burton, G.W. (1951). Quantitative inheritance in pearl millet (Pennisetum glaucum). Agric. J., 43:409-417.
Castle, W.E. and S. Wright (1951). An improved method of estimating the number of genetic factors concerned in cases of blending inheritance. Sci., 54:233.
Ghaderi, A. and R.L. Lower (1979). Heterosis and inbreeding depression for yield in populations derived from six crosses of cucumber. J. Amer. Soc. Hort. Sci., 104(4):564-567.
Hussain, A.; A. Abd El-Majid and G. Abd El-Rashid (1974). Heterosis studies for size, weight and total soluble solids in watermelon. J. Agric. Res. Pakistan, 12(2):145-152. (C.F. Plant Breed. Abst., 46:8485, 1976).
Jaiswal, R.C.; K. Sanjeev; R. Manoj; D.K. Singh; S. Kumar and M. Raghav (1990). Variation in quality traits of bittergourd (Momordica charantia L.) cultivars. Vegetable Sci., 17(2):186-190.

Janakiram, T. and P.S. Sirom (1992). Studies on heterosis for quantitative characters in bottle gourd. J. Maharashira Agric. Univ., 1992, 17(2):204-206. Indian Res. Inst. New Delhi, India. (C.F. Plant Breeding Abst., 64(4):4114, 1992).
Montgomery, R. (1961). Further studies of the phenol sulphuric acid reagent for carbohydrates. Biochem. Biophys. Acta, 84:591-593.
Rao, K.S.; R. Dominic; S. Kirpal; C. Kaluwin; D.E. Rivett; G.P. Jones and K. Singh (1990). Lipids, fatty acid, amino acids and mineral compositions of five edible plant leaves. J. Agric. Food Chem., 38(12):2137-2139.
Sakai, K.I. and J.J. Niles (1959). Heritability of grain shedding and other characters in Rice. Tropical Agric., Agric. J. Ceylon, 13:211-218. (C.F. M.Sc. Thesis, Yacoup, H.M., 1975).

Smith, H.H. (1952). Fixing Transagressive Vigor in Nicotiana resutica. Iwa State, College Press, USA.
Warid, A.W. and A.A. Abd El-Hafez (1976). Inheritance of marker genes of leaf color and ovary shape in watermelon. Citrullus vulgaris, Schard. The Libyan Journal of Science, 6A (1976).
Warner,J.N. (1952). A method for estimating heritability. Agron.J.,44:427-430.
Wright, S. (1921). System of mating. Genetics, 6:111-176. Cited after Burton, G.W., 1951.

(دراسات وراثية وكيماوية على القرع العسلى (كيوكربيتا موشوتا) محمد محمد عبد الرحمن - عبد المنصف عبد الرؤؤوف قموح - محمد اللسعيد أبو النصر مركز البحوث الزراعية ـ معهـ بحوث البساتبن - القاهرة

يعتبر القرع العسلى من محاصيل الخضر ذات القيمة الغذائية المرتفعـة والصنف البلدى المنتشـر فى
 و البروتين والليبيدات0 وفى هذا البحث تم التهجين بين سلالات مرباه ذاتيا من الصنف الليبى المنتظم الثنكل و السميك اللحم و الغنى بالكربو هيبر ات و البروتين والليبيدات والصنف البلدى وتم الحصول على الجيل الأول والجيل الثانى والتهجين الرجعى للأب الليبى والأب البلانى0
 حيث تم قياس نظام النوارث ، طبيعة السيادة ، معامل النوريث وعدد أزواج العو امل الور اثيـة المتحكمـة فى الصفات المذكورة0
كمـا تـم تحليـل لحم الثمـار والقتـرة كيماويــا لتقدير الكربو هيدرات والبـروتين والليييدات فـى الأبـاء
والأجيال الإنعزا الية المختلفة وتتلخص النتائج فيما يلى:وزن الثمـرة: تـورث هذه الصـفة كمياً ، وجود سيادة فائقـة تجـاه الأب الأكبـر وزنــا "الليبـى" ، معامـل التوريث فى المعنى الواسع 32.7\% وفى المعنى الضيق 29.4\% ويتحكم فى هذه الصفة من 3-2 زور ج من العو امل الور اثيةㅇ
 واحد مـن العو امـل الور اثيـة ، معامـل النوريث فـى المعنى الواسـع 67.2 وفى المعنى الضـيق 0\%138
التحليل الكيمـاوى لثمـار القر ع العسلى: أوضحت أن القشـرة كانت أعلىى فـى المحتوى مـن البـروتين والليبيدات عن اللحم فـى كل من الصنفين والأجيـل الإنـعز اليـة 0 الصنف الليبـى كـان أعلـي فـى المحتوى من الكربو هيدرات والبروتين والليبيدات عن الصنف البيلدى 0 كان الجيل الأول أعلىى فى الكربو هيدرات وكان التلقيح الرجعى للأب الليبى أعلى فى البروتين وكان الجيل الثانى أعلىى فی الليبيدات 0 وبصفة عامة توضح هذه النتائج إمكانيـة تحسين مواصفات الصنف البلدى من القرع العسلى عن
 الكربو هيدرات ، البروتين والليبيدات0

Table 1. Frequency distribution for fruit weight in kg of $P_{1}, P_{2}, F_{1}, F_{2}, B C_{1}$ and $B C_{2}$ populations for the cross Libi x

Population	Class center									Total	Mean	S \bar{x}	\mathbf{S}^{2}	CV\%
	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0					
P_{1}	-	1	16	10	18	3	4	-	1	53	3.46	± 0.096	0.486	18.740
P_{2}	9	5	20	6	7	-	-	-	-	47	2.97	± 0.093	0.407	21.481
F_{1}	-	1	4	6	19	7	9	1	3	50	4.23	± 0.111	0.614	18.524
F_{2}	15	17	15	24	140	33	6	16	9	275	3.93	± 0.052	0.746	21.973
BC_{1}	-	-	4	9	23	13	11	5	-	65	4.25		0.431	15.433
BC_{2}	3	3	17	19	13	1	-	-	-	56	3.35	$\pm \begin{aligned} & \pm 0.0819 \\ & \pm 0.19\end{aligned}$	0.842	28.873

Mid parent value $=3.22$.

Table 3. Frequency distribution for fruit shape index of $P_{1}, P_{2}, F_{1}, F_{2}, B C_{1}$ and $B C_{2}$ populations for the cross Libi x

Population	Class center													Total	Mean	Sx	S^{2}	CV\%
	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9					
P_{1}	--	1	30	22	--	--	--	--	--	--	--	--	--	53	0.94	± 0.007	0.003	5.662
P_{2}	--	4	2	3	12	9	7	6	3	--	--	--	1	47	1.19	± 0.031	0.046	18.071
F_{1}	10	20	8	5	7	--	--	--	--	--	--	--	--	50	0.86	± 0.019	0.017	15.277
F_{2}	20	6	35	75	60	30	14	5	5	5	5	15	--	275	1.10	± 0.016	0.067	23.472
BC_{1}	3	8	32	12	10	--	--	-	--	--	--	--	--	65	0.93	+0.013	0.011	11.047
BC_{2}	1	3	10	20	10	4	3	3	2	--	--	--	--	56	1.05	± 0.023	0.030	16.485

Mid parent value $=1.07$

