EVALUATION OF SOYBEAN TOP CROSSES FOR SEED YIELD AND OTHER AGRONOMIC CHARACTERS

Mansour, S.H.; Kh.A. AI-Assily; M.S.A. Mohamed; M.I. Abdel-Mohsen and M.H. Bastawisy
Food Legumes Res. Section, Field Crops Res. Inst., ARC.

Abstract

Four genotypes of soybean (Glycine max (L.) Merril), namely, H3Z, H30Z, H73ZBC and H75ZBC, were used as females top crossed to each of the three different genetic base testers (male), namely, Gasoy, Hartwig and H5L23. The following characters were measured: plant height, number of branches per plant, number of days to flowering, number of days to maturity, number of pods per plant, number of seeds per plant, 100 -seed weight and seed yield per plant. The mean squares due to parents, crosses and lines (females) by testers (males) were highly significant for all the studied traits. Relative estimates of the variance due to general combining ability (δ^{2} gca) and specific combining ability ($\delta^{2} \mathrm{sca}$) indicated that (δ^{2} sca) played a major role in the inheritance for all traits. The parental H5L23 (tester) gave the highest positive and higher significant " $\hat{g} i$ " effect than other two testers for number of pods per plant, number of seeds per plant and seed yield per plant. The female line H30Z behaved as good combiner for all studied characters, except 100seed weight. Significant positive "sca" effects were detected for number of pods per plant, number of seeds per plant and seed yield per plant in two crosses, i.e., (H30Z x Hartwig) and (H73ZBC x Hartwig). All crosses showed highly significant positive heterotic effects relative to mid and better parent values for yield and its component characters.

INTRODUCTION

The combining ability analysis gives very useful information with regard to selection of parents based on performance of their hybrids for the development of hybrids. Moreover, the combining ability analysis gives the nature and magnitude of various types of gene action involved in the expression of quantitative traits (El-Hosary et al., 1994).

The use of widely diverse germplasm in breeding programs has been studied in many crop species. Many authors suggested that genetic diversity was the key to obtain hybrid vigor. The crosses made in this study were from geographically diverse habitats. It was believed that they were from genetically diverse parents, as confirmed by the work of Paschal and Wilcox (1975). In self fertilizing crops, where commercial exploitation of heterosis is not feasible, the breeder will primarily be interested in higher magnitude of additive genetic variance for establishing superior genotypes. With regard to combining ability effects, several authors found the significance of both general and specific combining ability effects for important agronomic traits, yield and its components (Ma et al., 1983; Kunta et al., 1985; Cruz et al., 1987; El-Hosary et al., 1994 and Bastawisy et al., 1997).

The objectives of this study were: i) to determine the magnitude of heterosis for yield and its components and other agronomic characters, and ii)
to estimate the relative importance of general combining ability "gca" and specific combining ability "sca" in a set of top crosses involving new local genotypes and exotic parental strains.

MATERIALS AND METHODS

Four female lines of soybean were top crossed to each of three different male testers. The females were H3Z, H30Z, H73ZBC and H75ZBC. The male testers were Gasoy 17, Hartwig and H5L23. Table (1) demonstrates a brief description of these genotypes, i.e., maturity group, pedigree and origin.

In 2000 summer season, 12 top crosses were made at Itai El-Baroud Agricultural Research Station. In the following season 2001, seven parental genotypes and 12 top crosses were evaluated in a randomized complete block design with three replications. Each plot consisted of three ridges of 3 m length and 60 cm width. Hills were spaced 20 cm with one seed per hill in one side of the ridge. Flowering time (in days) was recorded at 50% flowering of plants and maturity time (in days) was recorded at 95% pod maturity. At harvest, ten guarded plants were taken at random from each experimental plot to provide measurements for the following characteristics: plant height, number of branches per plant, number of pods per plant, number of seeds per plant, 100-seed weight and seed yield per plant.

Combining ability analysis and the estimation of various effects were conducted based on the procedure developed by Kempthorne (1957). The heterotic effects of F_{1} crosses were estimated as percentage over mid and better parents (Mather and Jinks, 1971).

Estimation of "gca" effects:
a)
b)

Lines: $\quad g_{i}=\frac{x_{i} \cdot .}{\operatorname{tr}}-\frac{x \ldots}{\operatorname{ltr}}$
Testers: $\quad g_{i}=\frac{x . j .}{l r}-\frac{x \ldots}{\operatorname{ltr}}$
Estimates of "sca" effects:

$$
S_{i j}=\frac{x_{i j} \cdot}{r}-\frac{x_{i} \cdot .}{t r}-\frac{x . j .}{l r}-\frac{x \ldots}{l t r}
$$

$$
\delta^{2} \mathrm{gca}=\frac{1}{\mathrm{r}(2 \mathrm{lt}-1-\mathrm{t})}\left[\frac{(1-1)\left(\mathrm{M}_{\mathrm{l}}\right)+(\mathrm{t}-1)\left(\mathrm{M}_{\mathrm{t}}\right)}{1+\mathrm{t}-2}-\mathrm{M}_{\mathrm{lxt}}\right]
$$

$$
\delta^{2} \mathrm{sca}=\frac{\mathrm{M}_{\mathrm{lxt}}-\mathrm{M}_{\mathrm{e}}}{\mathrm{r}}
$$

where;
$\mathrm{I}=\mathrm{no}$. of lines.
$t=n o$. of testers.
$r=n o$. of replications.
$M_{I}=$ mean square of line.
$\mathrm{Mt}_{\mathrm{t}}=$ mean square of tester.
$M_{e}=$ mean square of error.
Table (1): Maturity group, pedigree and origin of the soybean genotypes.

Genotype	Maturity group	Pedigree	Origin
H3Z	IV	Crawford x L62-1686	Egypt
H30Z	III	L75-6648 x Corsoy	Egypt
H73ZBC	IV	L75-6648 x (L75-6648 x Hardin)	Egypt
H75ZBC	IV	Hardin \times (Calland \times Hardin)	Egypt
Gasoy 17	VI	Bragg x Hood	Georgia, U.S.A
Hartwig	V	Forrest x PI437-654	Missouri, U.S.A
H5L23	V	Lakota x D79-10426	Egypt

RESULTS AND DISCUSSION

The analysis of variance (Table 2) show that mean squares due to genotypes, parents and crosses were highly significant for all studied characters. The results confirmed the existence of genetic diversity in the genotypes studied. Mean squares for parent vs. crosses as an indication of average heterosis were estimated for all crosses. There were highly significant differences among mean squares for all the studied traits. Highly significant mean squares of females by males interaction were obtained, indicating that females did not express identical orders of ranking for the performance of their crosses with each male (tester).

The estimates of the variance due to general combining ability ($\delta^{2} \mathrm{gca}$) and specific combining ability (δ^{2} sca), presented in Table (2), showed that (δ^{2} sca) played a major role in the inheritance, for most of the traits. However, number of branches per plant, which represents non-additive type of gene action, was involved in determining the performance of top crosses progenies. These results support the findings of Kaw and Menon (1983), Cruz et al.(1987), Harer and Deshmukh (1991) and El-Hosary et al.(1994).

Values of gca effects " $\hat{\mathrm{g}} \mathrm{i}$ " for individual lines (females) and testers (males) in each trait are presented in Table (3). The female line H3OZ behaved as good combiner for all characters studied, except 100 -seed weight, followed by line H75ZBC which behaved as good combiner for number of pods per plant, number of seeds per plant, 100-seed weight and seed yield per plant. On the other hand, female line H3Z expressed highly significant negative " $\hat{\mathrm{g}} \mathrm{l}$ " effects for all the studied traits, except number of days to flowering. The male tester H5L23 gave the highest positive " $\hat{\mathrm{g}} \mathrm{i}$ " effect than other testers, Gasoy 17 and Hartwig, for number of branches per plant, number of pods per plant, number of seeds per plant and seed yield per plant. Therefore, the tester H5L23 could be considered as an excellent tester in breeding for high yield potentiality. Specific combining ability effect of the top crosses "S S ij " was computed for all the studied traits as shown in Table (4).

Mansour, S.H. et al.

The desirable inter- and intra-allelic interactions were represented by four top crosses (H3Z x Gasoy 17), (H30Z x Hartwig), (H73ZBC x Hartwig) and (H3Z \times H5L23) for number of pods per plant, number of seeds per plant and seed yield per plant. Another three crosses; (H3OZ x Gasoy 17), (H73ZBC x Gasoy 17) and (H75ZBC \times H5L23) were superior for number of days to flowering. These results are in accordance with those obtained by El-Hady et al.(1991), El-Hosary et al.(1994) and Bastawisy et al.(1997).

The mean performance of the 19 genotypes is given in Table (5). Wide variations between parents and between their F_{1} crosses for all the studied traits were observed. These variations might be primarily attributed to genetic diversity among parents for all the studied traits. The parental line H3OZ behaved as the earliest for maturity (108 days). However, the parental tester Harwig was the latest one for maturity (143.33 days). The parental line H75ZBC was the highest for seed yield per plant (18.6 g) and 100 -seed weight (17.29 g), but the parental tester Gasoy 17 was the lowest for these two traits (13.04 and 13.94 g) respectively. Results indicated that top cross (H75ZBC \times H5L23) gave the highest value for number of branches per plant, number of pods per plant and number of seeds per plant (7.40, 356.27 and 792.5), respectively. However, the top cross (H73ZBC x Gasoy 17) had the lowest value for the same traits ($5.20,115.77$ and 179.00), respectively. The top cross (H3Z x Hartwig) was the earliest for maturity date (124.67 days), however, the top cross (H30Z x Hartwig) was the latest (141.0 days). For seed yield per plant the top cross (H3OZ \times H5L23) gave the highest value (129.7 g), while the top cross (H73ZBC \times Gasoy 17) had the lowest value $(29.7 \mathrm{~g})$. Heterosis expressed as the percentage deviation of F_{1} mean performance from its mid and better parent values for all the studied traits, are presented in Table (6). For plant height, all top crosses exceeded positive highly significant to mid and better parents, except the top cross (H3Z x Gasoy 17) whereas exhibited highly significant negative heterosis for better parent value and insignificant for mid parent value. For number of branches per plant, all top crosses expressed highly significant positive heterotic effects relative to mid and better parent values. Concerning flowering and maturity dates, all top crosses expressed highly significant positive heterotic effects relative to better parent values, however, some top crosses exhibited significant negative and insignificant heterotic effects relative to mid parent values for flowering and maturity dates. Regarding yield and its components, all top crosses exhibited highly significant positive heterotic effects relative to mid and better parent values. The top cross (H30Z $\times \mathrm{H} 5 \mathrm{~L} 23$) gave the highest value for these traits, followed by cross (H75ZBC x H5L23). For 100seed weight, the four top crosses (H3Z x Gasoy 17), (H3OZ x Gasoy 17), (H73ZBC x Gasoy 17) and (H75ZBC \times Hartwig) showed significantly positive heterotic effects relative to mid and better parent values. While, top crosses (H3Z x Hartwig), (H3OZ x Hartwig), (H73ZBC x Hartwig), (H3Z x H5L23) and (H30Z \times H5L23) showed insignificant heterotic effects relative to mid and better parent values for 100 -seed weight. Hence, it could be concluded that these top crosses offer possibility for improving seed yield in soybean. These findings revealed that a hybridization program based on these materials would be useful. Similar trend was obtained by Weber et al.(1970), Paschal and

Wilcox (1975), Halvankar and Patil (1992), Bastawisy et al.(1997) and Habeeb (1998).

REFERENCES

Bastawisy, M.H.; H.M. Ibrahim and S.H. Mansour (1997). Combining ability and heterosis studies for yield and its components in some top crosses of soybean (Glycine max (L.) Merrill). Annals of Agric. Sci. Moshtohor, 35 (1): 93-106.
Cruz, C.D.; C.D. Sediyama and T. Sediyama (1987). Combining ability and reciprocal effects for some characters in soybean (Glycine max (L.) Merrill). Revista Ceres, 34: 432-439 (C.F. Plant Breed. Abst., 58: 9965, 1988).

El-Hady, M.M.; A. Omar and S.A. Khalil (1991). Heterosis, combining ability and genetic components for yield and its variables in a diallel cross of faba been. Egypt J. Appl. Sci., 6 (10): 1-13.
El-Hosary, A.A.; M.B. Habeeb and S.A. El-Shamarka (1994). Combining ability and heterosis in some top crosses of faba beans (Vicia faba L.). Egypt. J. Appl. Sci., 9 (21): 111-122.
Habeeb, M.B. (1998). Heterosis and combining ability in F_{2} diallel crosses of soybean (Glycine max (L.) Merrill). Minufiya J. Agric. Res., 23 (2): 261271.

Halvankar, G.B. and V.P. Patil (1992). Heterosis in soybean. J. Maharashtra Agric. Univ., 17 (3): 368-370 (C.F. Plant Breed. Abst. 64: 6137, 1994).
Harer, P.N. and R.B. Deshmukh (1991). Components of genetic variation in soybean (Glycine max (L.) Merrill). J. Oil Seeds Res., 8 (2): 220-225.
Kaw, R.N. and P.M. Menon (1983). Diallel analysis in soybean. Indian J. Agric. Sci., 53 (12): 991-997.
Kempthorne, O. (1957). An Introduction to Genetic Statistics. John Wiley and Sons, Inc. New York, 545 pp.
Kunta, T.; L.H. Edwards; R.W. Mc New and R. Dinkins (1985). Heterosis performance and combining ability in soybeans. Soybean Genetics Newsletter, 12: 97-99.
Ma, R.H.; J.Y. Gai and Y.Z. Hu (1983). Study on genetic variation in hybrid generations of soybean. 1. Heterosis and inbreeding depression. Scientia Agricultura Sinica, 5: 1-6 (C.F. Plant Breed. Abst. 54: 4157, 1994).

Mather, K. and J.L. Jinks (1971). Biometrical Genetics. $2^{\text {nd }}$ ed. Chapman and Hall Ltd., London, 382 pp.
Paschal, E.H. and J.R. Wilcox (1975). Heterosis and combining ability in exotic soybean germplasm. Crop Sci., 15: 344-349.
Weber, C.R.; L.T. Empig and J.C. Thorne (1970). Heterotic performance and combining ability of two-way F_{1} soybean hybrids. Crop Sci., 10: 159160.

تقييم الهجن القمية للمحصول وبعض الصفات الزراعية الأخرى فى فول الصويا سعيد حليم منصور، خير الاين على الأصيلى، محمد سيد على، محمود إبراهيم عبدالمحسن، محمود بسطويسى حبيب
قسم بحوث المحاصيل البقولية ـ معهج بحوث المحاصيل الحقلية ـ مركز البحوث الزراعية
أجرى هذا البحث بمحطـة إيتاى البـارود للبحوث الزراعيـة فى المواسم الصيفية
 القميـة لمحصول فول الصويا بين ثلاثة كشـافات هـى: Gasoy 17, Hartwig and H5L23 إستخذمت كآبـاء وأربع سلالات هی: H3Z, H30Z, H73ZBC and H75ZBC إستخدمت كأمهات. فى الموسم الزر اعى عام تم عمل التهجينات القمية بين هذه الأباء والأمهات السابقين وتكون لدينا أثغى عشر هجين قمى. فى الموسم الزرراعى عـام الار اسة صفات طول النبات و عدد فرو ع النبات وميعاد التز هير وميعاد النضتج وعدن قرون النبـات وعـدد البـذور فـى النبـات ووزن • . ا بــذرة ووزن بــور النبـات. وكانـت النتـائج المتحصل عليها كالنالى: كان تباين الآباء وتباين الهجن القمية وتباين التفاعل بين الكثافات والسلالات معنوياً لكل الصفات المدروسة.
ساهم تباين القدرة الخاصة على النتآلف بدور كبير فى وراثة كل الصفات المدروسـة عدا صفة عدد الفروع لللبات مما يغنى أن التباين الراجـع للـعو امـل غير المضيفة كـان مهماً فى ور اثة جميع الصفات تحت الار اسة. أوضهت قيم القدرة العامـة على التـألف أن الكثــاف H5L23 أفضـل مـن الكثــافين Hartwig لصفات وزن محصول النبـات وعدد بـنور النبـات وعدد قرون النبـات وعدد فروع النبات.
 والهجيـن (H73ZBC x Hartwig) أعطت قيم موجبـة وعاليـة المعنويـة لكل من وزن محصول النبات و عدد بذور النبات وعدد قرون النبات.

- إتضح من در اسة المتوسطات أن الهجين (H75ZBC x H5L23) كـان أفضـل الهجن

 . C (V, ε)
- كانت قيم قوة الهجين الخاصـة بصفات وزن محصول النبـات وعدد بذور النبـات و عدد قرون النبات معنوية موجبة لمعظم الهجن القمية سواء مقارنـة بمتوسط الأبوين أو مقارنة بالأب الأعلى قيمة.

Table (2): Analysis of variance for all the studied characters.

S.O.V	d.f	Plant height (cm)	No. of branches /plant	No. of days to flowering	No. of days to maturity	No. of pods /plant	No. of seeds /plant	100-seed weight (g)	Seed yield /plant (g)
Replications	2	2.33	0.33	1.42	0.69	58.7	82.54	0.44	3.30
Genotypes	18	$365.22^{* *}$	8.67**	139.65**	236.59**	22036.24**	168086.47**	3.63**	4899.17**
Parents	6	178.78**	0.58**	300.67**	516.64**	571.68**	1317.74**	3.88**	14.01
Crosses	11	164.24**	2.31**	59.28**	75.69**	19609.93**	129611.86**	3.17**	3450.24**
Lines (females)	3	454.81**	5.67**	58.10**	57.52**	15712.25**	83455.46**	2.34**	2068.34**
Testers (males)	2	112.14**	$1.42^{* *}$	127.09**	176.36*	57138.37**	425916.97**	$9.14{ }^{* *}$	12956.04**
Line x tester	6	36.33 **	0.92**	37.27**	51.21**	9049.29**	53921.70**	1.56**	972.59**
Parent vs. cross	1	3694.57**	127.27**	57.57**	326.34**	177513.03**	1591919.51**	7.26**	50148.26**
Error	36	3.02	0.11	1.05	2.15	45.35	211.04	0.17	10.13
$\delta^{2} \mathrm{gca}$		5.52	0.06	0.83	1.06	455.56	3265.07	0.07	106.88
$\delta^{2} \mathrm{sca}$		11.10	0.27	12.07	16.35	3001.31	17903.55	0.46	320.82

δ^{2} gca and δ^{2} sca refer to general and specific combining abilities, respectively.

* and ${ }^{* *}$: Significant at 0.05 and 0.01 levels of probability, respectively.

Table (3): General combining ability effect for all the studied characters.

Parent	Plant height (cm)	No. of branches/plant	No. of days to flowering	No. of days to maturity	No. of pods/plant	No. of seeds/plant	100-seed weight(g)	Seed yield /plant(g)
Line (female)								
H3Z	-9.89**	-0.85**	0.92**	-3.39**	-28.30**	-76.52**	-0.66**	-15.71**
H30Z	3.05**	0.22*	2.25**	2.72**	39.78**	90.56**	-0.15	14.43**
H73ZBC	6.66**	-0.36**	0.47	0.50	-43.08**	-89.67**	0.36*	-10.18**
H75ZBC	0.18	0.99**	-3.64**	0.17	31.60**	75.63**	0.45**	11.46**
S.E ($\hat{\mathrm{g}} \mathrm{i}-\hat{\mathrm{g}} \mathrm{j}$)	0.82	0.16	0.48	0.69	3.17	6.85	0.19	1.50
Tester (male)								
Gasoy 17	$-3.34 * *$	-0.39**	$3.75 * *$	2.74 **	$-51.57^{* *}$	-175.93**	0.71 **	$-31.74 * *$
Hartwig	2.66**	0.14	-2.08**	1.71**	-26.82**	-22.85**	0.26 *	-2.23*
H5L23	0.68	0.25*	-1.67**	-4.45**	78.39**	198.78**	-0.97**	33.97**
S.E ($\hat{\mathrm{g}} \mathrm{i}-\hat{\mathrm{g}} \mathbf{j}$)	0.71	0.14	0.42	0.60	2.75	5.93	0.17	1.30

${ }^{*}$ and $^{* *}$: Significant at 0.05 and 0.01 levels of probability, respectively.

Table (4): Specific combining ability effects for all the studied topcrosses.

| Crosses | $\begin{array}{c}\text { Plant } \\ \text { height }(\mathbf{c m})\end{array}$ | $\begin{array}{c}\text { No. of } \\ \text { branches/plant }\end{array}$ | $\begin{array}{c}\text { No. of days to } \\ \text { flowering }\end{array}$ | $\begin{array}{c}\text { No. of days to } \\ \text { maturity }\end{array}$ | $\begin{array}{c}\text { No. of } \\ \text { pods/plant }\end{array}$ | $\begin{array}{c}\text { No. of } \\ \text { seeds }\end{array}$ plant |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | \(\left.\begin{array}{c}100-seed

weight(g)\end{array}\right)\)| Seed yield |
| :---: |
| /plant(g) |$|$

* and ** : Significant at 0.05 and 0.01 levels of probability, respectively.

Table (5): The genotypes mean performance for all the studied traits.

Genotypes	Plant height(cm)	No. of branches/plant	No. of days to flowering	No. of days to maturity	No. of pods/plant	No. of seeds/plant	$\begin{gathered} 100-\text { seed } \\ \text { weight }(\mathrm{g}) \end{gathered}$	Seed yield /plant(g)
H3Z	82.73	3.33	38.00	116.33	92.10	119.40	15.31	16.45
H30Z	74.97	2.43	33.67	108.00	81.37	123.33	16.07	15.89
H73ZBC	91.50	2.43	37.00	120.67	71.87	145.27	15.42	18.11
H75ZBC	85.20	2.80	37.67	119.67	89.17	127.13	17.29	18.60
Gasoy 17	98.53	3.00	61.00	140.67	59.50	94.00	13.94	13.04
Hartwig	93.17	3.40	50.67	143.33	84.77	95.60	16.63	15.57
H5L23	85.87	2.33	50.00	131.67	58.13	88.83	14.74	13.19
H3Z x Gasoy 17	90.87	5.17	50.00	130.67	146.57	272.80	16.08	40.78
H30Z x Gasoy 17	102.27	5.23	55.67	133.67	128.07	249.40	16.96	39.38
H73ZBC x Gasoy 17	104.47	5.20	52.67	134.00	115.77	179.00	18.28	29.70
H75ZBC x Gasoy 17	105.50	6.50	41.00	135.33	172.87	434.33	17.03	72.65
H3Z x Hartwig	97.10	5.40	45.33	124.67	117.73	263.47	16.00	40.94
H30Z x Hartwig	109.17	6.80	44.67	141.00	234.17	604.70	16.24	106.18
H73ZBC x Hartwig	113.37	5.20	42.00	134.33	187.57	500.20	16.19	79.07
H75ZBC x Hartwig	107.47	6.83	44.00	129.67	142.83	379.50	18.08	74.30
H3Z x H5L23	94.70	4.63	45.67	126.67	227.97	613.60	15.07	103.17
H30Z x H5L23	110.07	6.37	44.67	125.67	334.27	797.03	15.47	129.70
H73ZBC x H5L23	114.50	6.27	45.00	125.33	164.60	431.23	15.72	92.67
H75ZBC x H5L23	99.90	7.40	42.33	127.67	356.27	792.50	15.34	119.40
L.S.D ${ }_{0.05}$	2.87	0.55	1.69	2.42	11.12	23.96	0.68	5.25
L.S.D ${ }_{0.01}$	3.83	0.73	2.26	3.23	14.85	32.03	0.91	7.02

Table (6): Percentage values of heterotic effects relative to mid (M.P) and better (B.P) parents for all the studied traits.

Crosses	Plant height		No. of branches/ plant		No. of days to flowering		No. of days to maturity		No. of pods /plant		No. of seeds /plant		100-seed weight		Seed yield /plant	
	M.P	B.P														
H3Z x Gasoy 17	0.26	-7.77	63.09	55.26	1.01	31.58	${ }^{*} 1.69$	12.33	$\begin{gathered} * * \\ 93.36 \end{gathered}$	59.14	155.67	128.48	$\begin{gathered} \hline \text { ** } \\ 9.91 \\ \hline \end{gathered}$	5.03	176.57	$\begin{gathered} * * \\ 147.90 \end{gathered}$
H30Z x Gasoy 17	18.58	$\begin{gathered} * * \\ 4.40 \\ \hline \end{gathered}$	** 92.28	74.33	${ }^{* *}$	65.34	** 7.51	23.77	81.81	** 57.39	129.51	102.22	12.99	5.54	172.24	147.83
H73ZBC x Gasoy 17	$\begin{gathered} * * \\ 9.95 \end{gathered}$	$\begin{gathered} * * \\ 6.03 \end{gathered}$	$\begin{gathered} * * \\ 91.18 \end{gathered}$	$\begin{gathered} * * \\ 73.33 \\ \hline \end{gathered}$	** 7.49	42.35	$\begin{gathered} * * \\ 2.55 \end{gathered}$	11.05	76.24	61.08	49.62	23.22	24.52	18.55	90.69	$\begin{gathered} * * \\ 63.99 \end{gathered}$
H75ZBC x Gasoy 17	14.84	** 7.07	124.14	116.67	-16.90	8.84	** 3.96	13.09	132.54	93.68	292.81	241.64	9.03	-1.50	359.23	290.59
H3Z x Hartwig	10.40	$\begin{gathered} * * \\ 4.22 \\ \hline \end{gathered}$	60.24	58.82	2.23	19.29	-3.97	$\begin{gathered} * * \\ 7.17 \end{gathered}$	33.12	27.83	146.02	120.66	0.19	-3.79	155.72	148.88
H30Z x Hartwig	29.86	17.17	132.88	100.00	**	32.67	$\begin{gathered} * * \\ 12.20 \end{gathered}$	30.56	181.89	176.24	452.39	390.31	-0.67	-2.35	$\begin{gathered} * * \\ 275.02 \\ \hline \end{gathered}$	268.22
H73ZBC x Hartwig	***	** 21.68	***	**	* ${ }^{*}$-20	***	* 1.77	** 11.32	139.49	***	** 315.31	** 244.32	1.00	-2.65	***	366.61
H75ZBC x Hartwig	20.50	15.35	120.32	100.88	-0.38	16.80	-1.39	${ }^{* *} 8.36$	64.23	60.18	240.76	198.51	**	**	334.88	299.46
H3Z x H5L23	***	${ }^{* *} 10.28$	** 77.74	***	${ }^{*}$-3.80	${ }^{* *} 20.18$	${ }^{*}{ }^{*} 15$	$8{ }^{* *}$	203.47	** 147.52	** 489.38	413.90	0.27	-1.57	***	527.17
H30Z x H5L23	36.87	28.18	167.65	162.14	${ }^{* *}$	32.67	** 4.87	${ }^{* *} 16.36$	379.24	310.80	651.35	546.26	0.39	-3.73	*** 792.02	716.24
H73ZBC x H5L23	29.10	25.14	163.44	158.02	${ }^{*}$ *	21.62	-0.67	** 3.86	155.19	129.02	268.42	196.85	4.24	1.95	492.14	411.71
كلنا نبايع مبـارك ك Sk	16.79	16.34	${ }^{* *} 187.94$	164.29	${ }^{*}$-3.44	** 12.37	1.59	** 6.69	***	***	** 633.93	***	* ${ }^{\star}$ - 24	**	** 651.18	541.94

* and **: Significant at 5\% and 1\% level of probability, respectively.

