MANIFESTATION OF HETEROSIS AND GENETIC PARAMETERS ASSOCIATED WITH IT FOR SOME VEGETATIVE AND EARLINESS TRAITS IN SQUASH

Abd El-Hadi, A.H.; A.M. El-AdI; M.S. Hamada and M.A.Abdein
Dept. of Genetics, Faculty of Agric. Mansoura University, Egypt.

Abstract

The main objectives of this investigation were to determine the amounts of heterosis versus the mid-parents and the better parent, nature of gene action, heritability in both broad and narrow senses and correlation between each pair of traits. Four parental varieties of squash were crossed to obtain $12 \mathrm{~F}_{1}$ hybrids according to a complete diallel crosses mating design.

The results revealed that the mean squares of genotypes which included four parental varieties and their hybrids were highly significant for all vegetative and earliness traits from the combined data. The results also cleared that mean values showed that no specific parent was superior for all studied traits. Generally, Eskandrani (P_{1}) was the best combiner for vein length (V.L.cm), number of leaves per plant (No.L./P.), fresh weight per plant (F.W./P.g) and dry weight per plant (D.W./P.g). Similarly, Zucchino mezza lung bianco (P_{2}) seemed to be the best combiner for leaf area (L.A.cm ${ }^{2}$) trait. The results also indicated that the parent P_{2} was the best combiner for all earliness traits. On the other hand, the performance of most $\mathrm{F}_{1,1 \mathrm{r}}$ hybrids were variable and the results cleared that no hybrid gave the best results for vegetative and earliness traits. The results revealed that heterosis over mid-parents indicated the presence of highly significant values for all studied traits except for fresh weight per plant (F.W./P.g). The estimates of heterosis versus better parent showed highly significant values for most studied traits. The results showed the importance of general and specific combining abilities. GCA were larger than their corresponding estimates of SCA for vegetative and earliness traits. Reciprocal effects (r) were significant for most studied traits from the combined data. Estimation of genetic parameters showed that additive genetic variance was very important for most studied traits. The inheritance of these traits was mostly governed by additive genetic variance rather than non-additive and cytoplasmic genetic factors. In the same time, the estimates of heritability in broad sense were larger in magnitudes than their corresponding values in narrow sense.

Most pairs of traits exhibited positive genotypic and phenotypic correlation coefficients, such as: vein length (V.L.cm) with number of leaves per plant (No.L./P.), leaf area (L.A.cm ${ }^{2}$), fresh weight per plant (F.W./P.g) and dry weight per plant (D.W./P.g). Also, number of first female flowering node (No.1 ${ }^{\text {st }}$ F.F.N) was significant correlated with date of first female flower (D.1 ${ }^{\text {st }}$ F.F.) and date of first male flower (D. $1^{\text {st}}$ M.F.). Therefore, plant breeders could design their programs, which make use of these advantages to select superior lines from the advanced segregating generations of the high yielding F_{1} hybrids.

INTRODUCTION

Heterosis has been studied in all important vegetable crops as well as cucurbits. In squash and other cucurbits, heterosis was utilized aiming to increase the productivity and quality of traits. Many investigators studied heterosis among them, Kash and El-Diasty (1989) who studied heterotic

Abd El-Hadi, A.H.et al.

effects in some squash hybrids. They observed heterosis values versus the mid-parents. They also cleared that the estimated values versus the better parent were significant for most studied traits. Abd El-Hadi (1995) studied six inbred lines and their $30 F_{1}$ hybrids among them (including F_{1} reciprocal hybrids) in agoor. He recorded the presence of highly significant values of heterosis versus the mid-parents. In this respect, Shamloul (2002) evaluated F_{1} hybrids among new selected inbred lines of sweet melon. He indicated that the means of the F_{1} hybrid significantly exceeded the means of the midparents for all vegetative traits. Similarly,Abd El-Maksoud et al. (2003) showed that the average means of the means of $F_{1,1 r}$ hybrids and the average over all hybrids $F_{1, \text { tr }}$ exceeded their mid-parents for all studied traits except for sex ratio and days to first female flower, which were desirable lower forward increasing in female flower and earliness, respectively. In another study, Gabr (2003) estimated heterosis over mid-parents and the better parent. He indicated the presence of highly significant heterosis values over mid-parents for all studied vegetative traits in squash.

Concerning, GCA and SCA variances El-Diasty and Kash (1989) revealed that additive genetic variances were larger in magnitudes than that of the non-additive genetic variances for most vegetative traits. On the other hand, Awny et al. (1992) studied five cucumber inbred lines and their $10 \mathrm{~F}_{1}$ hybrids. They cleared that specific combining ability variances were highly significant for leaves number and leaf area traits. They also added that there was no parent considered as the best combiner for all studied vegetative traits. In summer squash, El-Gendy (1999) reported that general combining ability and specific combining ability as well as reciprocal effects were significant for days to first female flower, numbers of fruits in the first seven pickings. In squash, Sadek (2003) illustrated that the non-additive genetic variances including dominance were the most important source of genetic variance. The results showed that both additive and non-additive genetic variances contributed in the inheritance of position of the first female flower, days to the first female flower and early yield as number and weight of fruits. Abd El-Hadi and El-Gendy (2004) studied four squash varieties and their 12 $\mathrm{F}_{1,1 \mathrm{r}}$ hybrids. They cleared that the analysis of variance of diallel crosses mating design indicated that the mean squares of GCA, SCA, GCA $\times L$ and SCA $\times \mathrm{L}$ showed highly significance for most studied traits at each location and over both locations. Recently, Abd El-Hadi et al. (2004) in squash showed that both GCA and SCA reveled highly significant values for all studied traits in the F_{1} hybrids and F_{2} generations except for F.W.(g) in the F_{1} hybrids for GCA.

Abd El-Hadi et al. (2001) in sweet melon reported that total yield per plant and length of fruit were positively correlated with weight of fruit. In squash, Abd El-Maksoud et al. (2003) reported that most pairs of traits exhibited negative (genotypic and phenotypic) correlation coefficient, while the following pairs of traits showed positive correlation coefficient i.e. sex ratio, days to the first female flower, early yield as weight and number of fruits in the 7 picking per plant total yield as total number and weight of fruits per plant. They also added that selection program for improving one or more of these traits would improve the others. In this respect, Abdel Sayyed et al.
(2003), in sweet melon, evaluated correlations between fruit quality characters. They found that flesh texture were negatively correlated with flesh flavor and aroma, while, positive genotypic correlations were detected between flesh flavor and each of flesh aroma and total acceptability.

MATERIALS AND METHODS

The genetic materials used in the present investigation included four varieties of squash belong to Cucurbita pepo, L. These varieties were: Eskandrani $\left(\mathrm{P}_{1}\right)$, Zucchino mezza lung bianco (P_{2}), White Bush Scallop (P_{3}) and Zucchino nano verde di Milano (P_{4}). The seeds of these parental varieties were obtained from different countries i.e.: (P_{1}) from Egypt, (P_{2}) from Germany, (P_{3}) from United States of America (U.S.A.) and (P_{4}) from Italy. All these varieties represented a wide range of variability in most studied traits.

Plants from each parental varieties were self-pollinated for three successive generations to obtain an inbred from each variety. In the summer season of 2002, all single crosses including reciprocals were made among these four varieties according to a complete diallel crosses mating design to produce $6 \mathrm{~F}_{1}$ hybrids and $6 \mathrm{~F}_{1}$ reciprocal hybrids. In addition, the four parental varieties were also self-pollinated to obtain enough seeds from each variety.

In the two summer seasons of 2003 and 2004 all the 16 genotypes obtained from the last season were evaluated in field trial experiment at ElBaramoun Station, Vegetables Research Station, Mansoura.

In the two growing seasons of 2003 and 2004 all 16 genotypes were evaluated in a field trial. The experimental design was the randomized complete blocks design with three replications. Each block consisted of 16 plots. Plot or the experimental unit was one ridge 5.0 m . long and 1.0 m . wide. The distance between hills was long 0.5 m . apart. Therefore, each ridge contained 10 hills. Data were recorded for the following vegetative and earliness traits: vein length (V.L.cm), number of leaves per plant (No.L./P.), leaf area (L.A.cm ${ }^{2}$), fresh weight per plant (F.W./P.g), dry weight per plant (D.W./P.g), number of first female flowering node (No. $1{ }^{\text {st }}$ F.F.N), date of first female flower (D. $1^{\text {st}}$ F.F.) and date of first male flower (D. $1^{\text {st}}$ M.F.).

Differences among genotypic means for all studied traits were tested for significance according to F-test. The form of analysis of variance and the expectations of mean squares were as outlined by Steel and Torrie (1960).

The amounts of heterosis were determined as the percentage deviation from the means of the F_{1} hybrids (F_{1}), F_{1} reciprocal hybrids (F_{11}) and all $\mathrm{F}_{1, \text {, } 1 \mathrm{r}}$ hybrids from the average of all parents (mid-parents) or the better parent.

In this investigation four varieties were utilized in a complete diallel crosses mating design to estimate general combining ability (G.C.A.) and specific combining ability (S.C.A.). In addition, the variances of reciprocal effect (r) could be also obtained. The procedures of these Analysis were described by Griffing (1956) method I. The estimates of GCA variance (${ }^{〔}$ نg) and SCA variance (' ${ }^{(}$Us) could be expressed in terms of genetic variances according to Matzingar \& Kempthorne (1956) and Cockerham (1963).

Abd El-Hadi, A.H.et al.

RESULTS AND DISCUSSION

The results of the analysis of variances and the mean squares for all genotypes are presented in Table 1. Tests of significance revealed that the mean squares of the genotypes showed highly significance for all studied traits in both years and from the combined data. This finding indicated the presence of real differences among them except Y_{2} for No.1 ${ }^{\text {st }}$ F.F.N which was only significant. In addition, the significant mean squares of genotypes suggested that the planned comparisons to understand the nature of variation and determinate the amounts of heterosis for these traits were valid.

Table 1: Analysis of variances and mean squares for vegetative and earliness traits for each year and the combined data.

S.V.	d.f	V.L.cmb.			Y_{1}	Y_{2}	Comb.	Y_{1}	Y_{2}	Comb.	Y_{1}	Y_{2}	Comb.	Y_{1}
	1	-	-	1.22	-	-	0.03	-	-	0.06	-	-	6	
Rep.	2	0.04	0.01	0.02	0.66	0.62	0.64	0.29	0.63	0.46	418.8	2777	1598	
Gen.	15	$686.9^{* *}$	$671.3^{* *}$	$1355^{* *}$	$76.8^{* *}$	$61.8^{* *}$	$137.1^{* *}$	$300^{* *}$	$279.6^{* *}$	$578.2^{* *}$	$143874^{* *}$	$131871^{* *}$	$27467^{* * *}$	
G \times Y	15	-	-	2.98	-	-	1.61	-	-	1.40	-	-	1075	
Error	30	4.17	3.81	3.99	1.78	3.02	2.40	3.20	2.40	2.80	3208	1733	2470	

Table 1: Cont.

S.V.	d.f	D.W./P.g			No.1 ${ }^{\text {st }}$ F.F.N.			D. $1^{\text {st}}$ F.F.			D. $1^{\text {st}}$ M.F.		
		Y_{1}	Y_{2}	Comb.	Y 1	Y	Comb.	Y_{1}	Y	Comb.	Y_{1}	Y_{2}	Comb.
Years	1	-	-	23.01	-	-	0.002	-	-	0.25	-	-	6.41
Rep.	2	14.65	28.31	21.48	0.001	0.002	0.002	2.28	0.35	1.3	0.20	1.71	0.96
Gen.	15	1147*	1089"	2217*	0.06"	0.05	0.11"	44.7"	45.6"	89.6	14.2 "	13.2 "	25.7
$\mathbf{G} \times \mathbf{Y}$	15	-	-	18.68	-	-	0.002	-	-	0.69	-	-	1.59
Error	30	22.82	26.74	24.78	0.001	0.001	0.001	1.29	1.37	1.33	1.23	1.56	1.40

*,** Significant at 0.05 and 0.01 levels of probability, respectively.
In the same time, the mean squares of genotypes by years interactions obtained from the combined data were insignificant for all studied traits.

The means of four parental varieties and their $12 \mathrm{~F}_{1,1 \mathrm{r}}$ hybrids at two years and their com
bined data were calculated and the results are presented in Table 2. The results showed that there was no specific parent was superior or the best for all studied traits. It is also cleared that the parental variety P_{1} was the highest parent for V.L.cm, No.L./P., F.W./P.g and D.W./P.g traits for the two years and from the combined data. While, the highest parent for L.A.cm ${ }^{2}$ was P_{2}. On the other hand, the parental variety P_{3} was the lowest parent for most studied traits. The differences between the means of the lowest and the highest parent were highly significant indicated the presence of genetic differences between these parental varieties.

In the same time, the results showed that there were no significant differences between the means of the F_{1} hybrids and F_{1} reciprocal hybrids for most studied traits. The results indicated that the highest F_{1} hybrids for the V.L.cm was $P_{1} \times P_{3}$ with the mean of 98.9 cm . from the combined data. Whereas, the highest F_{1} reciprocal hybrid was $P_{2} \times P_{1}$ with the mean of 70.5
cm . It was regarded that the means of F_{1} hybrids calculated from the combined data ranged from 58.7 to 98.9; 27.8 to $40.1 ; 82.8$ to $94.5 ; 889$ to 1512 and 147.8 to 201.3 for V.L.cm, No.L./P., L.A.cm ${ }^{2}$, F.W./P.g and D.W./P.g traits, respectively. In the same time, F_{16} reciprocal hybrids ranged from 54.3 to $70.5 ; 26.8$ to $35.7 ; 87.8$ to $94.6 ; 860.6$ to 1061 and 144.7 to 171.6 for the same above traits, respectively.

Concerning earliness traits, the result revealed that the means of the four parental varieties showed that the lowest (desirable) parent was P_{2} for all earliness traits at the two years and from the combined data except for first
 (undesirable) at the two years and from the combined data. On the other hand, the variety P_{3} was the highest (undesirable) parent for D.1 ${ }^{\text {st }}$ F.F. and D. $1^{\text {sttM.F. }}$. respectively at the two years and from the combined data.

The results also indicated that P_{2} variety was the earliest variety for flowering followed by P_{4}. This finding could be confirmed by the means of days to first female flower, which ranged from 46.6 to 56.8 days from the combined data. Furthermore, days to first male flower ranged from 45.8 to 51.5 days from the combined data, indicating that P_{3} was a very late variety, the variety P_{2} followed by P_{4} were early maturing varieties. In addition, the earlier F_{1} hybrids and F_{1} reciprocal hybrids were obtained when the included one or more of the earlier parents. For instance, the hybrid $\mathrm{P}_{2} \times \mathrm{P}_{4}$ exhibited the lowest (desirable) number of nodes to the first female flower from combined data, while the hybrids $\mathrm{P}_{1} \times \mathrm{P}_{4}$ and $\mathrm{P}_{2} \times \mathrm{P}_{3}$ exhibited the highest (undesirable) means for number of nodes to the first female flower from the combined data. On the other hand, the $F_{1 r}$ reciprocal hybrid $P_{2} \times P_{1}$ was the lowest (desirable) for combined data and the hybrid $P_{4} \times P_{3}$ was the highest (undesirable) from combined data for the same trait.

The results of combined data also indicated that the latest F_{1} hybrid for D. $1^{\text {st }}$ F.F. was $\mathrm{P}_{3} \times \mathrm{P}_{4}$ with the mean of 47.3 days. Whereas, the highest F_{1} reciprocal hybrid for D. $1^{\text {st }}$ F.F. was $\mathrm{P}_{3} \times \mathrm{P}_{1}$ with the mean of 49.4 days. On the other hand, F_{1} hybrid $P_{1} \times P_{2}$ was the earlier (desirable) with the mean 43.0 days. While, F_{1} reciprocal hybrid $P_{4} \times P_{2}$ was the earlier (desirable) with the mean 40.9 days for the same trait. It could be also regarded that the means of F_{1} hybrids for the combined data ranged from 3.66 to $3.83 ; 43.0$ to 47.3 days and 43.8 to 45.6 days for No. $1^{\text {st }}$ F.F.N, D. $1^{\text {st }}$ F.F. and D. $1^{\text {st}}$ M.F traits, respectively. In the same time, F_{1} reciprocal hybrids ranged from 3.73 to $3.85 ; 40.9$ to 49.4 days and 42.0 to 46.3 days for the same obvious traits, respectively.

Concerning the performances of F_{1} and $F_{1 r}$ hybrids for vegetative and earliness traits, the results indicated that the magnitudes of the means of F_{1} and $\mathrm{F}_{1 \mathrm{r}}$ hybrids were close to each other for most studied traits. In the same time, when the hybrids were compared with each other the results showed the presence of significant differences for many traits. It is also cleared that some F_{1} and $F_{1 r}$ hybrids of studied traits exceeded the better parent. Therefore, it would be expected because there were quite heterosis values versus the mid-parents.

Abd El-Hadi, A.H.et al.

Table 2: The mean performances of four parental varieties, their F_{1} and $F_{1 r}$ hybrids for vegetative and earliness traits for each year and the combined data.

	V.L.cm			No.L./P.			L.A.cm ${ }^{2}$			F.W./P.g		
Genotypes	Y_{1}	Y_{2}	Comb.									
P_{1}	67.1 ${ }^{\text {H }}$	$69.1{ }^{\text {H }}$	$68.1{ }^{\text {H }}$	$27.1^{\text {H }}$	$27.8{ }^{\text {H }}$	$27.5{ }^{\text {H }}$	79.4	80.3	79.9	957.3 ${ }^{\text {H }}$	970.5 ${ }^{\text {H }}$	963.9 ${ }^{\text {H }}$
P_{2}	46.8	47.8	47.3	26.7	27.3	27.0	$81.4{ }^{\text {H }}$	$82.6{ }^{\text {H }}$	$82.0{ }^{\text {H }}$	800.6	853.9	827.3
P_{3}	$34.4{ }^{\text {L }}$	$35.4{ }^{\text {L }}$	$34.9{ }^{\text {L }}$	19.9 ${ }^{\text {L }}$	20.5 ${ }^{\text {L }}$	$20.2{ }^{\text {L }}$	$54.6^{\text {L }}$	$55.5^{\text {L }}$	$55.0{ }^{\text {L }}$	$483.8{ }^{\text {L }}$	$530.8{ }^{\text {L }}$	$507.3{ }^{\text {L }}$
P_{4}	55.9	54.9	55.4	26.9	26.2	26.6	77.1	75.8	76.4	960.4	954.0	957.2
$\mathbf{P}_{1} \times \mathbf{P}_{2}$	76.4	78.0	77.2	33.8	34.3	34.0	90.7	91.9	91.3	1034	1104	1069
$\mathbf{P}_{1} \times \mathbf{P}_{3}$	99.7 ${ }^{\text {H }}$	$98.1^{\text {H }}$	98.9 ${ }^{\text {H }}$	$41.1^{\text {H }}$	$39.0{ }^{\mathrm{H}}$	40.1 H	$95.6{ }^{\text {H }}$	93.3 ${ }^{\text {H }}$	$94.5{ }^{\text {H }}$	1517 H	1507 H	$1512{ }^{\text {H }}$
$\mathbf{P}_{1} \times \mathbf{P}_{4}$	86.5	86.7	86.6	35.5	36.0	35.7	$82.7^{\text {L }}$	82.9 L	$82.8{ }^{\text {L }}$	1301	1317	1309
$\mathrm{P}_{2} \times \mathrm{P}_{3}$	$58.8{ }^{\text {L }}$	$58.7^{\text {L }}$	$58.7{ }^{\text {L }}$	29.1	28.7	28.9	87.9	87.5	87.7	$893.9{ }^{\text {L }}$	$884.1^{\text {L }}$	$889.0{ }^{\text {L }}$
$\mathbf{P}_{2} \times \mathbf{P}_{4}$	68.7	66.4	67.5	32.8	31.0	31.9	92.4	92.1	92.3	1111	1094	1102
$\mathrm{P}_{3} \times \mathrm{P}_{4}$	61.1	62.5	61.8	$27.6^{\text {L }}$	$28.0{ }^{\text {L }}$	$27.8{ }^{\text {L }}$	84.8	85.4	85.1	977.4	987.2	982.3
$\mathrm{P}_{2} \times \mathrm{P}_{1}$	$70.1^{\text {H }}$	$70.8{ }^{\text {H }}$	$70.5{ }^{\text {H }}$	30.9	31.1	31.0	92.1	91.8	92.0	1064 H	1057 H	$1061{ }^{\text {H }}$
$\mathrm{P}_{3} \times \mathrm{P}_{1}$	54.9 L	$53.7^{\text {L }}$	54.3 L	$25.9{ }^{\text {L }}$	27.7	$26.8{ }^{\text {L }}$	94.9 H	$94.3{ }^{\text {H }}$	$94.6{ }^{\text {H }}$	$850.7^{\text {L }}$	$870.5^{\text {L }}$	$860.6{ }^{\text {L }}$
$\mathbf{P}_{4} \times \mathbf{P}_{1}$	67.4	69.3	68.4	$36.2{ }^{\text {H }}$	$35.2{ }^{\text {H }}$	$35.7{ }^{\text {H }}$	92.4	91.7	92.1	1014	1007	1011
$\mathrm{P}_{3} \times \mathrm{P}_{2}$	60.9	62.4	61.7	26.9	27.9	27.4	$87.8{ }^{\text {L }}$	88.1	88.0	967.3	963.9	965.6
$\mathrm{P}_{4} \times \mathrm{P}_{2}$	66.8	67.0	66.9	30.9	31.8	31.4	91.9	92.2	92.0	997.3	987.3	992.3
$\mathrm{P}_{4} \times \mathrm{P}_{3}$	56.9	55.2	56.1	27.7	$27.3^{\text {L }}$	27.5	88.2	87.5 ${ }^{\text {L }}$	$87.8{ }^{\text {L }}$	977.2	967.3	972.3
L.S.D.0.05	3.40	3.25	3.26	2.22	2.89	2.53	2.98	2.58	2.73	94.34	69.33	81.16
L.S.D.0.01	4.59	4.38	4.34	3.00	3.90	3.36	4.02	3.48	3.63	127.2	93.46	107.9

Table 2: Cont.

	D.W./P.g			No. ${ }^{\text {st }}$ F.F.N.			D. $1^{\text {st }}$ F.F.			D. $1^{\text {st }}$ M.F.		
Genotypes	Y_{1}	Y_{2}	Comb.									
P_{1}	153.9 H	$156.1{ }^{\text {H }}$	$155.0{ }^{\text {H }}$	$4.22{ }^{\text {H }}$	$4.21{ }^{\text {H }}$	$4.22{ }^{\text {H }}$	52.1	51.5	51.8	47.3	46.7	47.0
P_{2}	145.4	146.0	145.7	$3.96{ }^{\text {L }}$	$3.97{ }^{\text {L }}$	$3.97{ }^{\text {L }}$	46.4	$46.8{ }^{\text {L }}$	$46.6{ }^{\text {L }}$	$45.4{ }^{\text {L }}$	$46.1^{\text {L }}$	$45.8{ }^{\text {L }}$
P_{3}	$114.1{ }^{\text {L }}$	$115.5^{\text {L }}$	$114.8{ }^{\text {L }}$	3.98	3.99	3.99	$57.2{ }^{\text {H }}$	$56.3{ }^{\text {H }}$	$56.8{ }^{\text {H }}$	$51.8{ }^{\text {H }}$	$51.3^{\text {H }}$	H
P_{4}	153.6	152.1	152.9	4.03	4.01	4.02	$46.1^{\text {L }}$	47.4	46.8	$45.4{ }^{\text {L }}$	46.3	45.9
$\mathbf{P}_{1} \times \mathrm{P}_{2}$	166.1	165.5	165.8	3.72	3.75	3.73	$43.4{ }^{\text {L }}$	$42.6{ }^{\text {L }}$	$43.0{ }^{\text {L }}$	$43.8{ }^{\text {L }}$	44.1	43.9
$\mathrm{P}_{1} \times$	$199.9{ }^{\text {H }}$	$202.8{ }^{\text {H }}$	201.3^{H}	3.75	3.74	3.75	46.7	46.5	46.6	44.4	44.8	44.6
$\mathbf{P}_{1} \times \mathbf{P}_{4}$	190.8	187.5	189.2	3.82	3.84 H	$3.83{ }^{\text {H }}$	44.1	43.5	43.8	45.2	45.9 H	$45.6{ }^{\text {H }}$
$\mathrm{P}_{2} \times \mathrm{P}_{3}$	$148.9{ }^{\text {L }}$	$146.7^{\text {L }}$	$147.8^{\text {L }}$	$3.84{ }^{\text {H }}$	3.83	$3.83{ }^{\text {H }}$	43.5	43.6	43.6	$43.5{ }^{\text {H }}$	44.1	$43.8{ }^{\text {L }}$
$\mathbf{P}_{2} \times \mathbf{P}_{4}$	165.5	166.9	166.2	$3.64{ }^{\text {L }}$	$3.68{ }^{\text {L }}$	$3.66{ }^{\text {L }}$	44.9	45.3	45.1	44.4	43.6 ${ }^{\text {L }}$	44.0
$\mathbf{P}_{3} \times \mathbf{P}_{4}$	153.2	153.9	153.5	3.81	3.83	3.82	$47.1^{\text {H }}$	$47.6{ }^{\text {H }}$	47.3^{H}	45.2	45.3	45.3
$\mathbf{P}_{2} \times \mathbf{P}_{1}$	$170.6^{\text {H }}$	$172.7{ }^{\text {H }}$	171.6^{H}	$3.72{ }^{\text {L }}$	$3.75{ }^{\text {L }}$	$3.73{ }^{\text {L }}$	43.4	43.3	43.4	44.2	43.7	44.0
$\mathrm{P}_{3} \times \mathrm{P}_{1}$	139.7 ${ }^{\text {L }}$	149.8 ${ }^{\text {L }}$	144.7 ${ }^{\text {L }}$	3.83	3.81	3.82	49.3	49.4	49.4	$46.1^{\text {H }}$	$46.5{ }^{\text {H }}$	$46.3{ }^{\text {H }}$
$\mathbf{P}_{4} \times \mathbf{P}_{1}$	158.8	159.5	159.2	3.79	3.82	3.80	47.3	47.6	47.5	45.2	45.5	45.4
$\mathrm{P}_{3} \times \mathrm{P}_{2}$	153.1	156.8	155.0	3.81	3.84 H	3.83	44.9	43.7	44.3	44.2	46.0	45.1
$\mathrm{P}_{4} \times \mathrm{P}_{2}$	152.3	155.1	153.7	3.73	3.76	3.74	41.3 ${ }^{\text {L }}$	40.4 ${ }^{\text {L }}$	40.9 ${ }^{\text {L }}$	$41.4{ }^{\text {L }}$	42.5 ${ }^{\text {L }}$	$42.0{ }^{\text {L }}$
$\mathbf{P}_{4} \times \mathbf{P}_{3}$	159.4	153.8	156.6	3.87 H	3.83	$3.85{ }^{\text {H }}$	48.3	48.9	48.6	45.1	45.5	45.3
L.S.D.0.05	7.95	8.61	8.13	0.05	0.05	0.05	1.89	1.94	1.88	1.85	2.08	1.93
L.S.D. ${ }_{0.01}$	10.72	11.61	10.81	0.07	0.07	0.07	2.55	2.62	2.50	2.49	2.80	2.57

$\mathrm{H}=$ The highest value $\mathrm{L}=$ The lowest value

Heterosis versus the mid-parents (Hм.p.\%) were estimated for vegetative and earliness traits and the results are presented in Table 3. The result cleared the presence of heterosis versus the mid-parents for most vegetative traits over two years and their combined data. All hybrids exhibited highly significant and positive values for V.L.cm, No.L./P. and L.A.cm². The results also revealed that heterotic effects for F_{1} hybrids for the combined data ranged from 31.5 to 92.1% for V.L.cm; 18.9 to 68.1% for No.L./P; 6.0 to 40.0% for L.A.cm ${ }^{2}$; 19.4 to 105.6% for F.W./P.g and 10.3 to 49.3% for D.W./P.g. In the same time, the results revealed that heterotic effects for $\mathrm{F}_{1 \mathrm{r}}$ hybrids ranged from 5.4 to 49.9%; 12.4 to 32.3%; 13.6 to 40.2%; 5.2 to 44.7% and 3.0 to 19.0% for V.L.cm, No.L./P., L.A.cm ${ }^{2}$, F.W./P.g and D.W./P.g, respectively.

The results also showed the presence of heterosis relative to midparents for earliness traits over two years and the combined data. All hybrids showed negative highly significant and desirable heterotic values for No. $1^{\text {st }}$.F.N, D. $1^{\text {st }}$ F.F. and D. $1^{\text {st }}$ M.F. toward earliness, except the F_{1} hybrid P_{1} $\times P_{4}$ was insignificant for Y_{2} and only significant for combined data for D. $1^{\text {st}}$ M.F. trait.

Heterosis versus the better parent (Hв.р.\%) was estimated for vegetative and earliness traits and the results are presented in Table 4. The result indicated that all hybrids showed positive and highly significant heterosis values for L.A.cm ${ }^{2}$ for the two years and the combined data except for $P_{1} \times P_{4}$ in Y_{2}. While, all hybrids were insignificant for F.W./P.g. At the same time, most hybrids were highly significant for V.L.cm and No.L./P. While, most hybrids were insignificant for D.W./P.g for the two years and their combined data.

These results revealed that heterotic effects ($\mathrm{H}_{\text {B.P. }}$ \%) for F_{1} and their $F_{1 r}$ hybrids from the combined data showed that $10,11,12,0$ and 4 hybrids from the 12 had positive significant values for V.L.cm, No.L./P, L.A.cm ${ }^{2}$, F.W./P.g and D.W./P.g, respectively. The results cleared the presence of heterosis percentage of the 12 hybrids relative to better parent for earliness traits at two years and from the combined data. All hybrids showed highly significant and (desirable) negative heterotic values for No. $1^{\text {stF }}$.F.N. for the two years and their combined data. Similarly, 10 and 6 hybrids showed highly significant and (desirable) negative heterotic values for D.1 ${ }^{\text {stF }}$ F.F. and for D. $1^{\text {st}} \mathrm{M}$.F. from the combined data, respectively.

The analysis of variances for combining ability of the four varieties and their hybrids for vegetative and earliness traits for the two years and their combined data are shown in Table 5. The combined data revealed that the mean squares due to hybrids were highly significant for all studied traits except for F.W./P.g. which was significant. While, the mean squares due to general combining ability were significant and highly significant for all studied traits except for No.1 $1^{\text {st}}$ F.F.N. and D. $1^{\text {st }}$ M.F were insignificant for the two years.

Abd El-Hadi, A.H.et al.

Table 3: Heterosis relative to mid-parents (Hм.р.\%) for vegetative and earliness
traits for each year and the combined data over the two years.

	V.L.cm			No.L./P.			L.A.cm ${ }^{2}$			F.W./P.g		
Hybrids	Y_{1}	Y_{2}	Comb.	Y_{1}	Y_{2}	Comb.	Y_{1}	Y_{2}	Comb.	Y_{1}	Y_{2}	Comb.
$\mathrm{P}_{1} \times \mathrm{P}_{2}$	34.1**	33.4**	33.8**	25.8**	24.4**	25.1**	12.8**	12.8**	12.8**	$16.8{ }^{\text {L }}$	21.9	$19.4{ }^{\text {L }}$
$\mathrm{P}_{1} \times \mathrm{P}_{3}$	96.5**H	87.8** H	92.1** H	74.8** H	61.6** H	68.1** H	42.7** H	37.5** H	40.0** ${ }^{\text {H }}$	108.6* ${ }^{\text {H }}$	102.6** H	105.6^* H
$\mathbf{P}_{1} \times \mathbf{P}_{4}$	40.7**	39.9**	40.3 ${ }^{\text {** }}$	31.5**	33.2**	32.3**	5.7** L	$6.3^{\star *} \mathrm{~L}$	6.0** L	34.7	37.9	36.3
$\mathbf{P}_{2} \times \mathbf{P}_{3}$	44.7**	41.0**	42.8**	24.7**	20.1**	22.4**	29.3**	26.7**	28.0**	39.2	27.7	33.2
$\mathbf{P}_{2} \times \mathbf{P}_{4}$	33.7** L	29.3** L	31.5** L	22.5**	16.2** L	19.3**	16.6**	16.4**	16.5**	26.1	$21.0^{\text {L }}$	23.5
$\mathbf{P}_{3} \times \mathbf{P}_{4}$	35.3**	38.4**	36.8**	17.8** L	19.9**	18.9** L	28.8**	30.2**	29.5**	35.4	33.0	34.2
$\mathrm{P}_{2} \times \mathrm{P}_{1}$	23.1**	21.2**	22.2**	14.9**	12.9** L	13.9**	14.6** ${ }^{\text {L }}$	12.7** L	13.6** L	20.1	16.7	18.4
$\mathrm{P}_{3} \times \mathrm{P}_{1}$	8.2** L	$2.7^{\text {L }}$	5.4**	10.2** L	14.6**	12.4** ${ }^{\text {L }}$	41.7** H	38.8** H	40.2** H	17.0	17.0	17.0
$\mathrm{P}_{4} \times \mathrm{P}_{1}$	9.6**	11.9**	10.7**	34.2** H	30.4**	32.3** H	18.1**	17.5**	17.8**	$5.0^{\text {L }}$	$5.4{ }^{\text {L }}$	$5.2{ }^{\text {L }}$
$\mathrm{P}_{3} \times \mathrm{P}_{2}$	49.9** H	49.9** H	49.9** H	15.6**	16.8**	16.2**	29.1**	27.7**	28.4**	$50.6{ }^{\text {H }}$	$39.2{ }^{\text {H }}$	44.7 ${ }^{\text {H }}$
$\mathrm{P}_{4} \times \mathrm{P}_{2}$	30.1**	30.5**	30.3**	15.4**	19.2**	17.3**	15.9**	16.4**	16.2**	13.3	9.2	11.2
$\mathbf{P}_{4} \times \mathrm{P}_{3}$	26.0**	22.3**	24.2**	18.3**	16.9**	17.6**	33.9**	33.3**	33.6**	35.3	30.3	32.8
L.S.D. ${ }_{\text {-.05 }}$	2.95	2.82	2.82	1.92	2.51	2.19	2.58	2.23	2.37	81.7	60.04	70.29
L.S.D. ${ }_{\text {.01 }}$	3.97	3.80	3.76	2.59	3.38	2.91	3.48	3.01	3.15	110.1	80.94	93.48

Table 3: Cont.

Hybrids	D.W./P.g			N. $1^{\text {st }}$ F.F.N.			D. $1^{\text {st }}$ F.F.			D. $1^{\text {st }} \mathrm{M} . \mathrm{F}^{\text {F }}$		
	Y_{1}	Y_{2}	Comb.									
$\mathbf{P}_{1} \times \mathbf{P}_{2}$	10.8** L	9.7* ${ }^{\text {L }}$	10.3** L	-9.1** L	-8.4**	-8.8** L	-11.9**	-13.3**	-12.6**	-5.5**	-5.1**	$-5.3^{\star *}$
$\mathrm{P}_{1} \times \mathrm{P}_{3}$	49.2** H	49.3** H	49.3** H	-8.5**	-8.7** ${ }^{\text {L }}$	-8.6**	-14.5**	-13.7**	-14.1**	-10.3**	-8.6**	-9.4**
$\mathrm{P}_{1} \times \mathrm{P}_{4}$	24.7**	21.1**	22.9**	-7.3**	$-6.4^{\star *}$	-6.9**	-10.1**	-12.1**	-11.1**	-2.5**	-1.2^{H}	-1.8* ${ }^{\text {H }}$
$\mathrm{P}_{2} \times \mathrm{P}_{3}$	14.5**	12.5**	13.5**	-3.4** ${ }^{\text {* }}$	-3.9** H	-3.6** H	-16.0** L	-15.5** L	-15.7** L	-10.5** L	-9.4** L	-10.0** L
$\mathrm{P}_{2} \times \mathrm{P}_{4}$	11.1**	11.6**	11.3**	-8.9**	-7.7**	-8.3**	-2.8** H	$-3.9{ }^{\star \star}$ H	-3.4** ${ }^{\text {H }}$	-2.2** H	-5.7**	-4.0**
$\mathrm{P}_{3} \times \mathrm{P}_{4}$	15.1**	14.4**	14.7**	-4.8**	-4.3**	-4.5**	-8.8**	-8.3**	-8.5**	-7.1**	-7.1**	-7.1**
$\mathbf{P}_{2} \times \mathbf{P}_{1}$	13.8**	14.5**	14.1**	-9.0** L	-8.4**	-8.7** L	-11.9**	-11.8**	-11.9**	-4.6**	-5.9**	-5.2**
$\mathrm{P}_{3} \times \mathrm{P}_{1}$	4.3	10.3**	7.3*	-6.7**	-7.0**	-6.9**	-9.7**	-8.4**	-9.1**	-6.8**	-5.1**	-6.0**
$\mathbf{P}_{4} \times \mathbf{P}_{1}$	3.8	$3.0{ }^{\text {L }}$	3.4	-8.2**	-7.1**	-7.6**	-3.5** H	$-3.8{ }^{* * ~} \mathrm{H}$	$-3.7{ }^{* * ~ H}$	-2.6** H	-2.1* H	-2.3** H
$\mathrm{P}_{3} \times \mathrm{P}_{2}$	17.8**	20.2** H	19.0** H	-4.0**	-3.4** H	-3.7** H	$-13.3^{\star *} \mathrm{~L}$	-15.2** L	-14.2** L	-9.1** L	-5.5**	-7.3**
$\mathbf{P}_{4} \times \mathbf{P}_{2}$	$2.2{ }^{\text {L }}$	3.7	$3.0^{\text {L }}$	-6.6**	$-5.8{ }^{\text {** }}$	-6.2**	-10.6**	-14.2**	-12.4**	-8.8**	-8.0** L	-8.4**
$\mathbf{P}_{4} \times \mathbf{P}_{3}$	19.8** H	14.3**	17.0**	$-3.5^{* * ~ H}$	-4.2**	-3.8**	-6.5**	-5.8**	-6.1**	-7.1**	-6.7**	-6.9**
L.S.D. ${ }_{\text {. } 05}$	6.89	7.46	7.04	0.05	0.05	0.05	1.64	1.68	1.62	1.60	1.80	1.67
L.S.D.0.01	9.29	10.06	9.36	0.06	0.06	0.06	2.21	2.27	2.16	2.16	2.43	2.23

[^0]
. Agric. Sci. Mansoura Univ., 30 (1), march, 2005

Table 4: Heterosis relative to better parent (H...\%) for vegetative and earliness
traits for each year and the combined data over the two years.

	V.L.cm			No.L./P.			L.A.cm ${ }^{2}$			F.W./P.g		
Hybrids	Y_{1}	Y_{2}	Comb.									
$\mathrm{P}_{1} \times \mathrm{P}_{2}$	13.8**	12.9** L	13.3**	24.7**	23.3**	23.8**	11.4**	11.3**	11.3**	6.5	15.3	10.9
$\mathbf{P}_{1} \times \mathrm{P}_{3}$	48.6** H	42.0** H	45.3** H	51.5**	40.4** H	45.6** H	20.4**	16.2** H	18.2** H	$56.3{ }^{\text {H }}$	$57.4{ }^{\text {H }}$	$56.9{ }^{\text {H }}$
$\mathbf{P}_{1} \times \mathrm{P}_{4}$	29.0**	25.5**	27.2**	31.0**	29.4**	29.9**	4.2** L	3.3* L	$3.7{ }^{\star \star} \mathrm{L}$	34.0	37.6	35.8
$\mathbf{P}_{2} \times \mathrm{P}_{3}$	25.6 ${ }^{\text {** }}$	22.7**	24.1**	8.9**	5.0** L	6.9**	8.0**	5.9**	7.0**	11.6	$3.5{ }^{\text {L }}$	7.5
$\mathbf{P}_{2} \times \mathbf{P}_{4}$	22.8**	20.9**	21.9**	22.1**	13.7**	18.3**	13.5**	11.5**	12.5**	15.6	14.7	15.2
$\mathbf{P}_{3} \times \mathbf{P}_{4}$	9.2** ${ }^{\text {L }}$	13.8**	11.5**	2.6* ${ }^{\text {L }}$	6.7**	4.4** L	10.0**	12.7**	11.4**	$1.8{ }^{\text {L }}$	$3.5{ }^{\text {L }}$	$2.6{ }^{\text {L }}$
$\mathbf{P}_{2} \times \mathrm{P}_{1}$	4.5*	2.5	3.5*	13.9**	11.9**	12.7**	13.1**	11.1**	12.1**	9.6	10.4	10.0
$\mathrm{P}_{3} \times \mathrm{P}_{1}$	-18.2** L	-22.3** L	-20.3** L	-4.4** L	$-0.5^{\text {L }}$	-2.6* ${ }^{\text {L }}$	19.5** H	17.4** H	18.4** H	$-12.3^{\text {L }}$	$-9.1^{\text {L }}$	$-10.7^{\text {L }}$
$\mathbf{P}_{4} \times \mathbf{P}_{1}$	0.45	0.34	0.39	33.7** H	26.6** H	29.9** H	16.4**	14.2**	15.2**	4.5	5.2	4.8
$\mathbf{P}_{3} \times \mathbf{P}_{2}$	30.1** H	30.5** H	30.3** H	0.87	2.1	1.5	7.8**	6.7**	7.3**	$20.8{ }^{\text {H }}$	$12.9{ }^{\text {H }}$	$16.7{ }^{\text {H }}$
$\mathbf{P}_{4} \times \mathbf{P}_{2}$	19.6**	22.0**	20.8**	15.0**	16.6**	16.2**	12.9**	11.6**	12.2**	3.8	3.5	3.7
$\mathrm{P}_{4} \times \mathrm{P}_{3}$	1.8	0.61	1.20	3.1**	4.1**	3.4**	14.4**	15.4**	15.0**	1.8	1.4	1.6
L.S.D. ${ }_{0.05}$	3.40	3.25	3.26	2.22	2.89	2.53	2.98	2.58	2.73	94.3	69.3	81.2
L.S.D. ${ }_{0.01}$	4.59	4.38	4.34	3.00	3.90	3.36	4.02	3.48	3.63	127.2	93.5	107.9

Table 4: Cont.

	D.W./P.g			N. $1^{\text {st }}$ F.F.N.			D. $1^{\text {st }}$ F.F.			D. $1^{\text {st }}$ M.F.		
Hybrids	Y_{1}	Y_{2}	Comb.	Y_{1}	Y_{2}	Comb.	Y_{1}	Y_{2}	Comb.	Y_{1}	Y_{2}	Comb.
$\mathrm{P}_{1} \times \mathrm{P}_{2}$	7.9	6.0	7.0	-6.1**	-5.6**	-6.0**	-6.5**	-9.0**	-7.8**	-3.5**	-4.4**	-4.1**
$\mathrm{P}_{1} \times \mathrm{P}_{3}$	29.9** H	29.9** H	29.9** H	$-5.7^{\star *}$	-6.3**	-6.1**	$-10.3^{\star *} \mathrm{~L}$	$-9.6{ }^{\star *} \mathrm{~L}$	$-10.0{ }^{* *} \mathrm{~L}$	-6.1**	-4.1**	$-5.1^{* *} \mathrm{~L}$
$\mathbf{P}_{1} \times \mathbf{P}_{4}$	24.0**	20.1**	22.0**	-5.1**	-4.2**	-4.6**	-4.3**	-8.2**	-6.4**	$-0.4{ }^{\text {H }}$	$-0.8{ }^{\text {H }}$	$-0.7{ }^{\text {H }}$
$\mathrm{P}_{2} \times \mathrm{P}_{3}$	2.1	0.85	1.5	-3.1** H	$-3.6{ }^{\star *} \mathrm{H}$	-3.5** H	-6.2**	-6.9**	-6.5**	-4.3**	-4.3**	-4.4**
$\mathrm{P}_{2} \times \mathrm{P}_{4}$	8.8*	8.6*	8.7*	-8.2** ${ }^{\text {L }}$	-7.2** L	-7.8**	-2.5*	$-3.3^{* *}$	$-3.2{ }^{\text {** }}$	-2.2*	$-5.5^{\text {** }}$	-4.0**
$\mathbf{P}_{3} \times \mathbf{P}_{4}$	$0.70{ }^{\text {L }}$	$0.20^{\text {L }}$	$0.40{ }^{\text {L }}$	-4.2**	-4.1**	-4.3**	2.1* H	$0.4{ }^{\text {H }}$	$1.1^{\text {H }}$	-0.5	-2.1*	-1.4
$\mathrm{P}_{2} \times \mathrm{P}_{1}$	10.8** H	10.6* H	10.7* H	$-6.1^{* * L}$	$-5.6{ }^{* *}$ L	-6.0** L	-6.5**	-7.4**	-7.0**	-2.6**	-5.2**	-4.0**
$\mathrm{P}_{3} \times \mathrm{P}_{1}$	-9.2* ${ }^{\text {L }}$	$-4.1^{\text {L }}$	$-6.6^{\text {L }}$	-3.9**	-4.5**	-4.3**	$-5.3{ }^{\star *}$	-4.1**	-4.7**	-2.5**	-0.5	-1.5
$\mathbf{P}_{4} \times \mathrm{P}_{1}$	3.2	2.2	2.7	-6.0**	-4.8**	-5.4**	2.7**	0.4	1.4	$-0.5^{\text {H }}$	-1.7	$-1.2{ }^{\text {H }}$
$\mathrm{P}_{3} \times \mathrm{P}_{2}$	5.0	7.8	6.4	-3.8**	$-3.2{ }^{* * ~ H ~}$	-3.6** H	-3.2**	-6.6**	-4.9**	-2.7**	$-0.1{ }^{\text {H }}$	-1.5
$\mathrm{P}_{4} \times \mathrm{P}_{2}$	0.15	1.0	0.53	-5.9**	-5.4**	-5.8**	-10.3**L	-13.6**	-12.3** L	-8.7** L	-7.8**L	-8.4** L
$\mathrm{P}_{4} \times \mathrm{P}_{3}$	4.8	0.15	2.4	-2.8** ${ }^{\text {¢ }}$	-4.0**	$-3.6{ }^{\star \star \mathrm{H}}$	4.8** H	3.2** H	3.8** H	-0.6	-1.7	-1.3
L.S.D.0.05	7.95	8.61	8.13	0.05	0.05	0.05	1.89	1.94	1.88	1.85	2.08	1.93
L.S.D.0.01	10.7	11.6	10.8	0.07	0.07	0.07	2.55	2.62	2.50	2.49	2.80	2.57

*,** Significant and highly significant at 0.05 and 0.01 probability levels, respectively.
$\mathrm{H}=$ The highest value $\mathrm{L}=$ The lowest value
Genetic parameters, including additive (${ }^{r} \dot{\sim} A$), dominance (${ }^{r} \dot{U}$), reciprocal effect (${ }^{\top} \dot{\cup} r$), additive variance \times year (${ }^{\top} \dot{\cup} A \times Y$), non-additive genetic variances \times year (${ }^{\top} \dot{U}$ D $\times \mathrm{Y}$) and reciprocal effect \times year (${ }^{r} \dot{U} r \times Y$) in addition to

Abd El－Hadi，A．H．et al．

heritability in broad（ $\mathrm{h}^{2} \mathrm{~b} \%$ ）and narrow（ $\mathrm{h}^{2}{ }_{\mathrm{n}} \%$ ）senses for vegetative traits and the obtained results are presented in Table 6．The results from the two years and the combined data illustrated that the magnitudes of $\delta^{r} \mathrm{~A}$ were larger in magnitudes than corresponding values of δ^{r} D for V．L．cm，F．W．／P．g．and D．W．／P．g traits．On the other hand，the magnitudes of $\delta^{r} D$ were larger for No．L．／P．and L．A．cm ${ }^{2}$ ．The results also indicated that the magnitudes of ${ }^{\dagger} \dot{U} \mathrm{~A} \times$ Y were larger than those of ${ }^{Y} \dot{U} \mathrm{D} \times \mathrm{Y}$ for all studied traits except L．A．cm ${ }^{2}$ trait． It could be emphasized on the important of ${ }^{「} \dot{U} A$ and ${ }^{r} \dot{U} D$ for the inheritance of the studied traits．The obtained results of ${ }^{r} \dot{ }$ UA and ${ }^{r} \dot{~} D$ could explain the presence of heterosis could be due to ${ }^{「} \dot{U}$ and ${ }^{r} \dot{~} A \times A$ epistasis．The results also cleared the presence of ${ }^{〔}$ نr for all studied traits．All of genetic parameters played an important role in the inheritance of all studied traits． Similar results were obtained by values of heritability in narrow sense．

The results also illustrated the importance of reciprocal variances（ ${ }^{r}$ Ur）， which was larger than both additive and dominance genetic variances，except for L．A．cm²．This result indicated that these traits not only controlled by nuclear genetic factors，but also the cytoplasmic genetic factors which play an important role in the inheritance of these traits．The same trend was also observed for vegetative traits as presented in the same table for earliness traits．Thus，both additive（ ${ }^{〔} \dot{\text { A }}$ ），non－additive genetic variances including dominance（ ${ }^{r} \dot{U}$ D）contributed to the inheritance of No． $1^{\text {st } F . F . N, ~ D . ~} 1^{\text {st } F . F . ~ a n d ~}$ D． $1^{\text {st }}$ M．F．traits．The dominance（ ${ }^{r} \dot{U}$ ）genetic variance was larger than the corresponding values of additive genetic variance（ $\left.{ }^{r} \dot{U} A\right)$ for No． $1^{\text {st }}$ F．F．N trait． This suggests that dominance genetic variance played the major role in the genetic expression of earliness traits．On the other hand，the magnitudes of ${ }^{「}$ UA were larger for D． $1^{\text {st }}$ F．F．and D． $1^{\text {st }}$ M．F．This suggests that additive genetic variance played the major role in the genetic expression of these traits．Furthermore，the reciprocal effect variance（ ${ }^{\top} \dot{\sim}$ r）were positive for all studied earliness traits，indicating that cytoplasmic factors have their role in the expression of these traits in addition to nuclear genes．

The values of heritability in broad（ $\mathrm{h}^{2} \mathrm{~b} \%$ ）and narrow（ $\mathrm{h}^{2}{ }_{\mathrm{n}} \%$ ）senses were also estimated and the results are cleared in the same Table．

Concerning heritability values from the combined data．The results indicated that the magnitudes of the values in broad sense（ h^{2} b $\%$ ）were always larger than their corresponding narrow sense（ $\mathrm{h}^{2}{ }^{2} \%$ ）for all studied traits．The values of heritability in broad sense ranged from 24.71% to 82.01% for No．L．／P．and L．A．cm ${ }^{2}$ traits，respectively．In the same time，the highest value of $h^{2}{ }^{n} \%$ was 74.24% for D． $1^{\text {st }}$ F．F．These obtained values of heritability indicated the possibility of improving these studied traits through selection programs in the segregated generations．

The results also cleared that GCA mean squares were important than that SCA mean squares for all studied traits except for L．A．cm ${ }^{2}$ and No． $1^{\text {st }}$ F．F．N．This finding cleared that additive genetic variances were more important in the inheritance of these traits．This was emphasized by the ratio
of GCA/SCA exceed one. Meanwhile, the SCA mean square or non-additive genetic variances were more important than GCA mean squares for L.A.cm².

The reciprocal effect variance was significant for combined data for all studied traits except for D.W./P.g, No. $1^{\text {stF}}$ F.F.N. and D. $1^{\text {st}}$ M.F. While, the interactions of GCA by years ($G C A \times Y$), SCA by years (SCA \times Y) and rec. by years (Rec. $\times \mathrm{Y}$) were insignificant for all studied traits. The interaction between crosses by years were only significant for D. $1^{\text {st }}$ F.F.

Positive or negative GCA effects (g_{i}) estimates could indicate that a given inbred is better or poorer than the average of the group involved with it in the complete diallel crosses mating system.

The general combining ability effects (g_{i}) of four parents for vegetative and earliness traits of the two years and their combined data are given in Table 7.The results revealed that the P_{1} for GCA effects showed (desirable) positive and highly significant values for V.L.cm, No.L./P., F.W./P.g and D.W./P.g. While, it only significant for L.A.cm ${ }^{2}$. On the other hand, the GCA effects showed highly significant and positive (desirable) for the parent P_{2} for L.A.cm ${ }^{2}$ for the two years and their combined data. These results indicated that the parents P_{3} and P_{4} having negative (undesirable) and significant GCA for V.L.cm, No.L./P. and D.W./P.g.

These results indicated that the parents P_{2} and P_{1} were the best combiner for L.A.cm ${ }^{2}$. In the same time, the two parents P_{1} and P_{2} were the best combiner for No.L./P. Meanwhile, the GCA effects were significant and positive for most studied traits. The parent P_{1} was the best combiner for V.L.cm, No.L./P., F.W./P.g and D.W./P.g. The results for the two years and their combined analysis revealed that the GCA effects showed (desirable) negative and highly significant values to the parent P_{2} for all earliness traits, No. $1^{\text {st}}$ F.F.N, D. $1^{\text {st }}$ F.F. and D. $1^{\text {st M.F. }}$. toward earliness. Meanwhile, the GCA effects were found to be significant and positive (undesirable) for the parent P_{3} for all studied earliness traits.

Estimates of specific combining ability effects ($\mathrm{sij}_{\mathrm{i}}$) of 12 hybrids for vegetative and earliness traits for two years and their combined data are presented in Table 8. The results showed that the F_{1} hybrids $P_{1} \times P_{3}$ and $P_{2} \times$ P_{4} showed highly significant positive (desirable) of SCA effects for V.L.cm for combined data. While, the F_{1} hybrids $\mathrm{P}_{1} \times \mathrm{P}_{2}$ and $\mathrm{P}_{3} \times \mathrm{P}_{4}$ showed highly significant and negative (undesirable) of SCA effects for combined data for the same trait.The F_{1} hybrid $P_{1} \times P_{3}$ gave the highest value for V.L.cm 2.90 for the combined data. On the other hand, $\mathrm{F}_{1 \mathrm{r}}$ hybrids $\mathrm{P}_{2} \times \mathrm{P}_{1}, \mathrm{P}_{3} \times \mathrm{P}_{1}, \mathrm{P}_{4} \times$ P_{1} and $P_{4} \times P_{3}$ showed highly significant positive (desirable) of SCA effects for V.L.cm for combined data. While, the $F_{1 r}$ hybrid $P_{3} \times P_{2}$ showed highly significant negative (undesirable) of SCA effects for combined data for the same trait. The $F_{1 r}$ hybrid $P_{3} \times P_{1}$ showed the highest value 22.3 for the combined data for the same trait.

For No.L./P.,the F_{1} hybrid $P_{2 \times} \times P_{4}$ gave the highest significant value 1.02 for the combined data. While, the $F_{1 r}$ hybrid $P_{3} \times P_{1}$ showed the highest value 6.63 for combined data for the same trait. For L.A.cm ${ }^{2}$ the F_{1} hybrid $P_{1} \times P_{3}$ cleared the highest value 3.37 for the combined data. While, the $F_{1 r}$ hybrid P_{4} $\times P_{2}$ gave the highest value 0.11 for the combined data for the same trait. For F.W./P.g the F_{1} hybrid $P_{1} \times P_{3}$ cleared the highest value 56.4 for combined

Abd El-Hadi, A.H.et al.

data. While, the $F_{1 r}$ hybrid $P_{3} \times P_{1}$ gave the highest value 131 for combined data for the same trait. For D.W./P.g the F_{1} hybrid $P_{1} \times P_{3}$ gave the highest value 2.75 for combined data. While, the $F_{1 r}$ hybrid $P_{3} \times P_{1}$ gave the highest value 28.3 for the combined data for the same trait.
Table 5: Analysis of combining abilities and mean squares of F_{1} hybrids for vegetative and earliness traits.

	d.f.	V.L.cm			No.L./P.			L.A.cm ${ }^{2}$			F.W./P.g		
S.V.		Y_{1}	Y_{2}	Comb.									
Crosses	11	515.8**	510**	1023**	61.42**	44.95**	104.4**	45.55**	36.97**	81.36**	100906**	100179**	200226**
G.C.A.	3	135.9**	146**	281.7**	8.80*	9.78*	18.2*	19.24*	16.14*	34.84**	18145*	23569**	41453**
S.C.A.	2	42.2*	21.6	61.2*	7.67	5.59	13.2	39.73*	31.08*	70.4*	11851	8469	20091
R.E.	6	233.2**	231**	463.7**	30.6**	20.7**	50.3**	4.98	4.17*	8.84*	48642**	46613**	94937**
$\mathrm{C} \times \mathrm{Y}$	11	--	--	3.19	--	--	1.93	--	--	1.16	--	--	859
G.C.A. \times Y	3	--	--	0.29	--	--	0.38	--	--	0.55	--	--	260.7
S.C.A. $\times Y$	2	--	--	2.60	--	--	0.10	--	--	0.41	--	--	229.6
R.E. $\times \mathrm{Y}$	6	--	--	0.94	--	--	0.96	--	--	0.30	--	--	318.1
Pooled Error	22/44	1.90	1.73	1.81	0.81	1.37	1.09	1.45	1.09	1.27	1458	787.6	1123
G.C.A./ S.C.A.	--	3.22	6.76	4.60	1.15	1.75	1.38	0.48	0.52	0.49	1.53	2.78	2.06
G.C.A. \times Y/S.C.A. \times Y	--	--	--	0.11	--	--	3.80	--	--	1.34	--	--	1.14

Table 5: Cont.

	d.f.	D.W./P.g			No.1 ${ }^{\text {st }}$ F.F.N.			D. $1^{\text {st }} \mathrm{F} . \mathrm{F}$.			D. $1^{\text {st }} \mathrm{M} . \mathrm{F}$.		
S.V.		Y_{1}	Y_{2}	Comb.									
Crosses	11	895.9**	820.3**	1691.2**	0.013**	0.008**	0.019**	17.04**	23.14**	39.69**	4.22**	7.63**	10.04**
G.C.A.	3	195.2*	278.8*	468.4**	0.009	0.004	0.012*	14.49*	19.24**	33.4**	2.35	5.59	7.36*
S.C.A.	2	38.6	62.01	48.29	0.006	0.006	0.012*	0.45	1.15	1.49	0.26	1.75	1.25
R.E.	6	448.6**	341.3**	783.2**	0.002	0.001	0.003*	3.02*	4.14*	7.06**	1.32	1.29	2.04
$\mathrm{C} \times \mathrm{Y}$	11	--	--	25.1	--	--	0.001	--	--	0.49	--	--	1.81*
G.C.A. $\times Y$	3	--	--	5.65	--	--	0.0008	--	--	0.34	--	--	0.58
S.C.A. \times Y	2	--	--	17.6	--	--	0.0001	--	--	0.11	--	--	0.76
R.E. $\times Y$	6	--	--	6.63	--	--	0.0001	--	--	0.10	--	--	0.56
Pooled Error	22/44	10.4	12.2	11.3	0.0006	0.0007	0.0006	0.59	0.62	0.60	0.56	0.71	0.63
G.C.A./ S.C.A.	--	5.06	4.50	9.70	1.5	0.7	1.0	32.2	16.7	22.4	9.04	3.19	5.89
G.C.A. \times Y/S.C.A. \times Y	--	--	--	0.32	--	--	8.00	--	--	3.09	--	--	0.76

${ }_{*}^{\text {*.,* }}$ Significant at 0.05 and 0.01 levels of probability, respectively.
The F_{1} hybrids $P_{1} \times P_{3}$ and $P_{2} \times P_{4}$ showed highly significant negative (desirable) of SCA effects for No.1 ${ }^{\text {st }}$ F.F.N. from combined data. While, the $\mathrm{F}_{1 r}$ hybrid $P_{4} \times P_{2}$ was significant and negative (desirable) of SCA effects for combined data for the same trait. This value was -0.044 for the combined data for the same trait. For D.1 ${ }^{\text {stF }}$.F. the F_{1} hybrids $P_{1} \times P_{4}$ and $P_{2} \times P_{3}$ showed the highest negative values for combined data. While, the $F_{1 r}$ hybrid $P_{3} \times P_{2}$ gave the highest negative value -1.95 from the combined data for the same trait. For D.1 ${ }^{\text {st }}$ M.F. the F_{1} hybrids $P_{1} \times P_{3}$ and $P_{2} \times P_{4}$ gave the highest negative values for combined data. While, the F_{1} reciprocal hybrid $P_{3} \times P_{1}$ gave the highest negative value -1.18 for the combined data for the same trait.

Table 6: The relative magnitudes of different genetic parameters and heritability for vegetative and earliness traits for each year and the combined data over the two years.

Genetic parameters and heritability	V.L.cm			No.L./P.			L.A.cm ${ }^{2}$			F.W./P.g		
	Y_{1}	Y_{2}	Comb.									
${ }^{\text {¢ }}$ A	46.8	62.2	55.6	0.56	2.1	1.18	-10.24	-7.48	-8.92	5197	7550	5332
¢ ${ }^{\text {D }}$	20.2	9.94	14.7	3.43	2.11	3.27	19.1	15.0	17.5	3148	3841	4965
' O	115.6	114.9	115.7	14.9	9.67	12.4	1.76	1.53	2.14	23592	22913	23655
${ }^{\text {¢ }} \mathbf{A} \times \mathrm{Y}$	--	--	0.57	--	--	0.07	--	--	-0.03	--	--	7.75
${ }^{1} \mathrm{D} \times \mathrm{Y}$	--	--	0.39	--	--	-0.49	--	--	0.43	--	--	-446.6
'U $\mathrm{P} \times \mathrm{Y}$	--	--	-0.44	--	--	-0.06	--	--	-0.49	--	--	-402.4
- E	1.89	1.73	1.81	0.81	1.37	1.09	1.45	1.09	1.27	1458	787.6	1122.8
$\mathrm{H}^{2} \mathrm{~b}^{\text {\% }}$	36.32	38.22	37.24	20.25	27.61	24.71	85.61	85.13	82.01	24.99	32.46	29.35
$\mathrm{h}^{2} \%$	25.37	32.95	29.45	2.84	13.77	6.55	0.00	0.00	0.00	15.56	21.52	15.20

Table 6: Cont.

Genetic parameters and heritability	D.W./P.g			No.1 ${ }^{\text {st }}$ F.F.N.			D. $1^{\text {st }}$ F.F.			D. $1^{\text {st }}$ M.F.		
	Y_{1}	Y	Comb.	Y_{1}	Y_{2}	Comb.	Y_{1}	Y_{2}	Comb.	Y_{1}	Y_{2}	Comb.
'טA	95.7	108.4	108.0	0.0014	0.0014	0.0004	7.02	9.04	7.92	1.04	1.92	1.58
'0 ${ }^{\text {¢ }}$	3.26	24.9	7.68	0.0028	0.0028	0.0031	0.07	0.27	0.35	0.15	0.52	0.12
' O	219.1	164.5	194.1	0.0005	0.0002	0.0006	1.22	1.76	1.74	0.38	0.29	0.37
${ }^{\circ} \mathrm{A} \times \mathrm{Y}$	--	--	3.16	--	--	0.0002	--	--	0.058	--	--	0.05
${ }^{\circ} \mathrm{D} \times \mathrm{Y}$	--	--	2.98	--	--	-0.0003	--	--	-0.246	--	--	0.06
'Ur \times Y	--	--	-2.32	--	--	-0.0003	--	--	-0.25	--	--	-0.04
¢E	10.37	12.15	11.26	0.0006	0.0007	0.0006	0.59	0.62	0.60	0.56	0.71	0.63
$\mathrm{h}^{2}{ }^{\text {b }}$ \%	30.13	43.01	35.36	79.25	82.35	71.43	79.66	79.64	77.52	55.87	70.93	60.50
\mathbf{h}^{2} n\%	29.14	34.97	33.01	26.42	27.45	8.16	78.88	77.33	74.24	48.83	55.81	56.23

Note: Negative values were considered equal to zero during the calculation of heritability in broad and narrow senses.
Table 7: General combining ability effects $\left(g_{i}\right)$ of the four parents for vegetative and earliness traits from each year and from the combined data.

Parents	V.L.cm			No.L./P.			L.A.cm ${ }^{2}$			F.W./P.g		
	Y_{1}	Y_{2}	Comb.	Y_{1}	Y	Comb.	Y_{1}	Y_{2}	Comb.	Y_{1}	Y_{2}	Comb.
P1	8.61**	8.83**	8.72**	1.21**	1.74**	1.48**	0.76*	0.75*	0.76*	95.4**	111.7**	103.5**
P2	-1.48**	-1.05*	-1.27**	1.13**	0.79*	0.96**	1.67**	1.96**	1.81**	-59.6**	-60.0**	-59.8**
P3	-3.84**	-4.22**	-4.03**	-0.41	-0.78*	-0.60	0.80*	0.07	0.43	-30.4*	-37.5**	-34.0**
P4	$-3.30^{* *}$	$-3.55^{* *}$	$-3.43^{* *}$	$-1.93{ }^{* *}$	-1.75**	-1.84**	$-3.23 * *$	-2.78**	$-3.00{ }^{* *}$	-5.42	-14.2	-9.79
L.S.D. 0.05	0.87	0.83	0.83	0.57	0.74	0.64	0.76	0.66	0.70	24.2	17.8	20.7
L.S.D. 0.01	1.19	1.13	1.11	0.77	1.00	0.86	1.03	0.90	0.92	32.9	24.1	27.7

Table 7: Cont.

	D.W./P.g			No. $1^{\text {st }}$ F.F.N.			D. $1^{\text {st }}$ F.F.			D. $1^{\text {st }}$ M.F.		
Parents	Y_{1}	Y	Comb.									
P1	10.2**	12.5**	11.3**	-0.002	-0.006	-0.004	-0.083	-0.533^{*}	-0.308	0.396	0.921**	0.658**
P2	-4.13**	-4.71**	-4.42**	-0.058**	-0.038**	-0.048**	-2.075**	-2.108**	-2.092**	-0.971**	-1.687**	-1.329**
P3	-4.88**	-4.79**	-4.83**	0.056**	0.031**	0.044**	2.533**	3.084**	2.808**	0.788**	0.704*	0.746**
P4	-1.21	-2.96*	-2.08*	0.005	0.013	0.009	-0.375	-0.442	-0.408	-0.213	-0.062	-0.075
L.S.D. 0.05	2.04	2.21	2.07	0.015	0.016	0.015	0.49	0.50	0.48	0.47	0.53	0.49
L.S.D. 0.01	2.77	2.99	2.77	0.021	0.022	0.021	0.66	0.67	0.64	0.64	0.72	0.65

*,** Significant and highly significant at 0.05 and 0.01 probability levels, respectively.
The degree of association among different traits of squash is of great importance. The coefficient of genotypic correlation provides a measure of the genotypic association between pairs of traits to identify the traits which could be used as indicator for improvement of other traits through the selection programs.

Abd El-Hadi, A.H.et al.

Table 8: Specific combining ability effects(s_{ij}) of the 12 hybrids for vegetative and earliness traits from the two years and their combined data.

Hybrids	V.L.cm			No.L./P.			L.A.cm ${ }^{2}$			F.W./P.g		
	Y_{1}	Y_{2}	Comb.	Y_{1}	Y_{2}	Comb.	Y_{1}	Y_{2}	Comb.	Y_{1}	Y_{2}	Comb.
$\mathrm{P}_{1} \times \mathrm{P}_{2}$	-2.90**	-2.42**	-2.66**	-1.54**	-1.34*	-1.43**	-1.16*	-0.70	-0.93	-45.5*	-33.2*	-39.3**
$\mathrm{P}_{1} \times \mathrm{P}_{3}$	3.47**	2.20**	2.90**	1.10**	0.90	1.00*	3.61**	3.10**	3.37**	60.0**	52.9**	56.4**
$\mathrm{P}_{1} \times \mathrm{P}_{4}$	-0.60	-0.21	-0.41	0.40	0.44	0.42	-2.40**	-2.30**	-2.35**	-14.4	-19.0	-16.7
$\mathrm{P}_{2} \times \mathrm{P}_{3}$	-0.61	0.20	-0.20	0.39	0.42	0.40	-2.41**	$-2.34 *$	-2.38**	-14.7	-19.2	-16.9
$\mathrm{P}_{2} \times \mathrm{P}_{4}$	3.51**	2.23**	2.86**	1.14**	0.95	1.02*	3.57**	3.08**	3.33**	60.3**	52.2**	56.2**
$\mathrm{P}_{3} \times \mathrm{P}_{4}$	-2.87**	-2.40**	-2.63**	-1.51**	-1.36*	-1.44**	-1.15*	-0.74	-0.95	-45.6*	-33.3*	-39.5**
$\mathrm{P}_{2} \times \mathrm{P}_{1}$	3.12**	3.58**	3.35**	1.47*	1.58	1.53*	-0.72	0.07	-0.33	-15.0	23.3	4.17
$\mathrm{P}_{3} \times \mathrm{P}_{1}$	22.4**	22.2**	22.3**	7.58**	5.68**	6.63**	0.33	-0.47	-0.07	133**	128**	131**
$\mathrm{P}_{4} \times \mathrm{P}_{1}$	12.8**	12.2**	12.5**	4.28**	4.05**	4.17**	-2.53**	-2.60**	-2.57**	117**	107**	112**
$\mathrm{P}_{3} \times \mathrm{P}_{2}$	-4.32**	-5.33**	-4.83**	-3.58**	-3.27**	-3.43**	-2.23*	-2.12**	-2.18**	-60.0*	-61.7**	-60.8*
$\mathrm{P}_{4} \times \mathrm{P}_{2}$	0.92	-0.30	0.31	0.95	-0.40	0.28	0.25	-0.03	0.11	56.7*	53.3*	55. ${ }^{\text {* }}$
$\mathrm{P}_{4} \times \mathrm{P}_{3}$	2.08*	3.63**	2.86**	-0.07	0.35	0.14	-1.68	-1.02	-1.35	0.00	10.0	5.00
L.S.D. $\mathbf{S}_{\text {ij }}{ }^{\text {0 }} 0.05$	1.23	1.17	1.17	0.81	1.05	0.91	1.08	0.93	0.98	34.2	25.1	29.3
L.S.D. $\left.\mathrm{S}_{\mathrm{ij}}\right)_{0.01}$	1.67	1.59	1.57	1.00	1.42	1.22	1.46	1.27	1.32	46.4	34.1	39.1
L.S.D. r_{ij}) 0.05	2.01	1.92	1.92	1.32	1.71	1.49	1.76	1.53	1.61	55.9	41.1	47.9
L.S.D. $\left(\mathrm{r}_{\mathrm{ij}}\right) 0.01$	2.73	2.61	2.56	1.79	2.33	1.99	2.39	2.07	2.15	75.9	55.8	64.0

Table 8: Cont.

	D.W./P.g			No.1 ${ }^{\text {stF.F.N. }}$			D. $1^{\text {stF.F. }}$			D. $1^{\text {st }} \mathrm{M} . \mathrm{F}$.		
Hybrids	Y_{1}	Y_{2}	Comb.	Y_{1}	Y_{2}	Comb.	Y_{1}	Y_{2}	Comb.	Y_{1}	Y_{2}	Comb.
$\mathrm{P}_{1} \times \mathrm{P}_{2}$	-0.83	-2.94	-1.89	0.003	0.001	0.002	0.164	0.408	0.286	0.180	-0.390	-0.105
$\mathrm{P}_{1} \times \mathrm{P}_{3}$	1.11	4.47**	2.75	-0.041**	-0.043**	-0.042**	0.220	0.200	0.210	-0.289	-0.375	-0.332
$\mathrm{P}_{1} \times \mathrm{P}_{4}$	-0.29	-1.50	-0.90	0.035**	0.040**	0.037**	-0.386	-0.608	-0.497	0.110	0.760*	0.434
$\mathrm{P}_{2} \times \mathrm{P}_{3}$	-0.25	-1.53	-0.89	0.038**	0.039**	0.039**	-0.380	-0.610	-0.494	0.109	0.764*	0.436
$\mathrm{P}_{2} \times \mathrm{P}_{4}$	1.08	4.50**	2.70	-0.049**	-0.045**	-0.047**	0.224	0.204	0.214	-0.295	-0.375	-0.335
$\mathrm{P}_{3} \times \mathrm{P}_{4}$	-0.81	-2.92	-1.87	0.003	0.001	0.002	0.160	0.412	0.285	-0.183	-0.386	-0.285
$\mathrm{P}_{2} \times \mathrm{P}_{1}$	-2.33	-3.50	-2.92	-0.002	0.00	-0.001	0.00	-0.367	-0.183	-0.20	0.184	-0.008
$\mathrm{P}_{3} \times \mathrm{P}_{1}$	30.2**	26.5**	28.3**	-0.037*	-0.035	-0.036*	-1.30*	-1.42*	-1.36*	-0.85	-1.52*	-1.18*
$\mathrm{P}_{4} \times \mathrm{P}_{1}$	18.8**	15.3**	17.1**	0.007	0.008	0.007	-0.384	-0.177	-0.25	0.517	-0.850	-0.167
$\mathrm{P}_{3} \times \mathrm{P}_{2}$	-4.80*	-6.30*	-5.58*	0.025	0.005	0.015	-1.90**	-2.00**	-1.95**	-0.840	-0.717	-0.782
$\mathrm{P}_{4} \times \mathrm{P}_{2}$	6.50**	5.80*	6.17*	-0.045*	-0.042*	-0.044*	1.80**	2.42**	2.11**	1.48*	0.534	1.01
$\mathrm{P}_{4} \times \mathrm{P}_{3}$	-3.17	0.00	-1.58	-0.027	-0.008	-0.018	-0.617	-0.65	-0.633	0.017	-0.084	-0.033
L.S.D.(sij) 0.05	2.88	3.12	2.93	0.022	0.024	0.021	0.69	0.69	0.68	0.67	0.75	0.69
L.S.D.($\left.\mathrm{s}_{\mathrm{ij}}\right)_{0.01}$	3.91	4.24	3.92	0.031	0.032	0.031	0.93	0.94	0.90	0.91	1.02	0.93
L.S.D. r_{ij}) 0.05	4.71	5.10	4.79	0.036	0.039	0.035	1.12	1.15	1.11	1.09	1.23	1.13
L.S.D.($\mathrm{rij}^{\text {) }} 0.01$	6.30	6.65	6.41	0.049	0.053	0.047	1.53	1.56	1.48	1.49	1.67	1.52

*,** Significant and highly significant at 0.05 and 0.01 probability levels, respectively .
The covariance analysis between pairs of all studied traits were made from the combined data over both years. Subsequently, genotypic (r_{g}) and phenotypic ($r_{\text {ph }}$) correlations were determined and the results are presented in Table 9. The results showed positive highly significant genotypic (r_{g}) and phenotypic ($r_{p h}$) correlations between V.L.cm and No.L./P., F.W./P.g and D.W./P.g. The coefficients were $0.93,0.96$ and 0.96 for genotypic correlation
and $0.89,0.93$ and 0.91 for phenotypic correlation, respectively. At the same time, No.L./P. trait showed highly significant positive genotypic and phenotypic correlations with L.A.cm², F.W./P.g and D.W./P.g the coefficients were $0.68,0.91$ and 0.90 for genotypic correlation and $0.66,0.87$ and 0.86 for phenotypic correlation, respectively. On the other hand, L.A.cm ${ }^{2}$ showed highly significant and positively genotypic correlation with F.W./P.g and D.W./P.g. The coefficients were 0.63 and 0.62 , respectively. While, the same trait showed highly significant positive phenotypic correlation with F.W./P.g and the coefficient was 0.64 . F.W./P.g showed highly significant positive genotypic and phenotypic correlations with D.W./P.g. The values coefficients were 0.99 for genotypic correlation and 0.96 for phenotypic correlation, respectively. Also, No. $1^{\text {st }}$ F.F.N showed highly significant positive genotypic correlation with D. $1^{\text {st }}$ F.F. and D. $1^{\text {st }}$ M.F. the coefficients were 0.63 and 0.62 , respectively. D. $1^{\text {st }}$ F.F. showed highly significant positive genotypic correlation with D. $1{ }^{\text {st}} \mathrm{M} . \mathrm{F}$. the coefficient was 0.95 .

In general, most pairs of studied traits exhibited negative genotypic and phenotypic correlation coefficients. However, the same pairs of traits showed significant positive genotypic and phenotypic correlation among them. These results indicated that the selection of one trait would improve the other correlated trait.

Table 9: Genotypic (above diagonal) and phenotypic (below diagonal) correlation for all pairs of vegetative and earliness traits.

Traits	V.L.cm	No.L./P.	L.A.cm ${ }^{2}$	F.W./P.g	D.W./P.g	No. $1^{\text {st }}$ F.F.N.	D. $1^{\text {st }}$ F.F.	D. $1^{\text {st}}$ M.F.
V.L.cm		0.93**	0.59*	0.96**	0.96**	-0.41	-0.51*	-0.57*
No.L./P.	0.89**		0.68**	0.91**	0.90**	-0.56*	-0.57*	-0.66**
L.A.cm ${ }^{2}$	0.60*	0.66**		0.63**	0.62**	-0.65**	-0.70**	-0.84**
F.W./P.g	0.93**	0.87**	0.64**		0.99**	-0.44	-0.54*	-0.60*
D.W./P.g	0.91**	0.86**	0.61*	0.96**		-0.43	-0.55*	-0.60*
No.1 ${ }^{\text {st }}$ F.F.N.	-0.35	-0.43	-0.55*	-0.36	-0.34		0.63**	0.62**
D.1 ${ }^{\text {st }}$ F.F.	-0.45	-0.46	-0.61*	-0.46	-0.47	0.51*		0.95**
D. $1^{\text {st}}$ M.F.	-0.42	-0.46	-0.57*	-0.43	-0.41	0.43	0.56*	

REFERENCES

Abd El-Hadi, A.H. (1995). Nature of gene action and the performances of the hybrids among the new developed inbred lines of agoor (Cucumis melo var. chate, L.). Ph.D. Thesis, Fac. of Agric., Mansoura Univ.
Abd El-Hadi, A.H.; M.M. Zaghloul and A.H. Gabr (2004). Nature of gene action, heterosis and inbreeding depression of yield and yield component traits in squash (Cucurbita pepo, L.). Zagazig J. Agric, Res., 31(6): 2707-2725.
Abd El-Hadi, A.H. and Soher E.A. El-Gendy (2004). Effect of genotypes by locations interaction on economical traits of squash. J. Agric. Sci., Mansoura Univ., 29(10): 5667-5687.
Abd El-Hadi, A.H.; Z.A. Kosba; Z.M. El-Diasty; El-S.H. Askar and G.M. Shamloul (2001). Evaluation of F_{1} hybrids among new selected inbred lines of sweet melon (Cucumis melo var. aegyptiacus, L.).J. Agric. Sci., Mansoura Univ., 26(5): 2831-2845.

Abd El-Hadi, A.H.et al.

Abd El-Maksoud, M.M.; A.M. El-Adl; M.S. Hamada and M.S. Sadek (2003). Inheritance of some economical traits in squash (Cucurbita pepo, L.). J. Agric. Sci. Mansoura Univ., 28(6): 4463-4474.

Abdel Sayyed, S.M., S.M. Mahgoub, Y.T. Emam and A.R. Bauomy (2003) Genetical studies on sweet melon fruit sensory quality characters. Zagazig J. Agric, Res., 30(4): 1553-1564
Awny, S.; A. El-Mighawry; F. Mohamed and M. Abd El-Salam (1992). Heterosis, combining ability and heritability associated with F_{1} hybrids obtained from partial diallel mating design in cucumber (Cucumis sativus, L.). J. Agric. Sci. Mansoura Univ., 17(7): 2469-2475.
Cockerham, C.C. (1963). Estimation of genetic variances. Statistical Genetics and Plant Breeding. NAS-NRC, 982, pp.53-68.
El-Gendy, Soher E.A. (1999). Estimates of genetic parameters in some squash hybrids through two mating designs. Ph.D. Thesis, Fac. of Agric. Mansoura Univ.
El-Diasty, Z.M. and Kawther S. Kash (1989). The importance of additive and non-additive genetic variances estimated from diallel and factorial mating designs in squash (Cucurbita pepo, L.). II. Inbreeding depression and types of gene action associated with it. J. Agric. Sci. Mansoura Univ., 14(1): 233-244.
Gabr, A.H. (2003). Nature of gene action and performance of hybrids in squash (Cucurbita pepo, L.). M.Sc. Thesis, Fac. of Agric., Mansoura Univ.
Griffing, B. (1956). Concept of general and specific combining ability in relation to diallel crosses system. Aust. J. Biol. Sci., 9: 463-493.
Kash, Kawther S. and Z.M. El-Diasty (1989). The importance of additive and non-additive genetic variances estimated from diallel and factorial mating designs in squash (Cucurbita pepo, L.) I. Heterosis and types of gene action associated with it. J. Agric. Sci. Mansoura Univ., 14(1): 222-232.
Matzinger, D.F. and O. Kempthorne (1956). The modified diallel Table with partial inbreeding and interactions with environment. Genetics, 41: 822-833.
Sadek, Mariam S.S. (2003). Inheritance of some economical traits in squash (Cucurbita pepo, L.). M.Sc. Thesis, Fac. of Agric., Mansoura Univ.
Shamloul, G.M. (2002). Evaluation of selected inbred lines of sweet melon (Ismailawy) and hybrids among them. Ph.D. Thesis, Fac. of Agric. Mansoura Univ.
Steel, G.D. and H. Torrie (1960). Principles and procedures of statistics. Mc. raw. Hill Book Company, INC, New York, PP. 431.

مظهـر قـوة الهجـين والقياســت الوراثيـة المرتبطـة بهـا لـبعض الصـفات الخضـرية والتبكير في قرع الكوسة

أشــرف حســين عبد الهادي، على مـاهر العدل، محمد سعد حماده و محمد عبد الحميد عابدين قسم الوراثة ـ كلية الزراعةٌ ـ جامعة المنصورة ـ مصر.

تهدف هذه الدراسة إلى تقـير قيم قوة الهجين قياسا من متوسط الآبـاء و أفضـل الآبـاء، وطبيعة فعل
الجين، ومعامـل التوريث في مداه الواسع والضيق ومعامل الارتبـاط الور اثي والمظهري لبعض الصـنـات الخضرية و التبكير في قرع الكوسة.
في هذه الدراسة تم استخدام أربع أصناف من قر ع الكوسـة كآَباء وهى: Eskandrani (الأب الأول)، Zucchino nano verde،Zucchino mezza lung bianco di Milano
أظهرت الآبـاء مـدا واسـعا مـن التباينـات والاختلافـات لجميع الصـفات محل الارراسـة. فـي الموسم
الصيفي r ب . . والهجن العكسية) بنظام التهجين الدوري الكامل كما أجريت عمليـة إخصـاب ذاتي للأصـناف المستخذمة كآباء. جميع التر اكيب الور اثثــة الناتجـة مـن السنة السـابقة في هذه الار اســة تم تقييمهـا في تجربــة حقليـة في موسـي
 الور اثية المتحصل عليها ـ وقد تم إجراء هذه التجربـة في المزرعة البحثيـة بـالبر امون محطة بحوث البساتّنـن

بالمنصورة.
وبعد إجراء التحليلات الإحصائية المناسبة يمكن تلخيص النتائج المتحصل عليها فيما يلي:
أشنارت اختبارات المعنوية لجميع التر اكيب الور اثيـة (T 17 نركيب وراثي) من البيانـات المجمعة لكلا السنتين إلى وجود اختلافات عاليـة المعنويـة بين التنراكيب الور اثيـة محل الار اسـة لجميع الصفات الخضرية وصفات التبكير و هذه النتائج من المتوقع الحصول عليهـا، حيث أن هذه التنر اكيب الور اثيـة المستخدمة في هذه الاراسـة تختلف وتنتاين من حيث صفات الآباء المختارة للبدء في هذا العمل. أظهرت النتائج وجود اختلافات كبيرة بين هجن الجيل الأول والأول العكسي مع عدم تميز هجين معين بذاته لكل الصفات المدروسة، ولكن معظم التراكيب الور اثية للجيل الأول الهجين تميزت عن الآبـاء الداخلـة في تكوينها، ولذا فإن الهجن قد فاقت الآباء في معظم الصفات محل الاراسـة. القيم المحسوبة لقوة الهجين مقارنـة بمتوسط الآباء تؤكد وجود فيم معنوية لقوة الهجين لجميع الصفات محل الار اسة عدا صفة الوزن الغض للنبـات بالجر ام. القيم المحسوبة لقوة الهجين مقارنة بأفضـل الآباء أوضحت وجود قيم عاليـة المعنويـة لمعظم الصفات محل الدراسة.
أظهرت النتائج تعاظم قيم كل من القدرة العامـة على التآلف (GCA) والقـرة الخاصـة على التآلف
(SCA) (SCA) وأوضحت النتائج أهيـة القـرة العامـة علىى التآلف لجميع الصفات التي تمت دراستها للجيل الأول
 الجينى الصضيف وغير المضيف لعبا الدور الأكبر في نوريث هذه الصفات وكانت قيمـة التباين الور اثي الراجع للإضافة أعلي من قيمة التباين الور راثي غير الإضافي لمعظم الصفات المدروسة و الذي يشمل على تباين السيادة و الأخير يحتوى ضمنيا على جزء من التباين الور اثي والذي يعزى إلـى التفوق كمـا أنـه لا يمكن تجاهل تأتّثير التهجين العكسي (العو امل السيتوبلازمية)، وكذللك تم تقدير معامل التوريث في مداه الواسع والضيق لجميع الصفات محل الاراسة وقيم معامل النوريث في مداه الواسع كانت أعلي منـه في مداه الضيق لجميع الصفات محل الار اسة. كما أظهرت النتائج وجود ارتباط معنوي بين معظم أزواج الصفات التـي درست فقد كانت صفة طول السـاق مرتبطـة ارتباطـا معنويـا موجبـا مـع صفات عدد الأور اق على النبـات والمسـا
 زهرة مذكرة وأول زهرة مؤنثة ، وبالتـالي فالانتخـاب إلـى أي مـن هذه الصفات يؤدى إلـى تحسين الصـات

الأخرى المرتبطة بها.
ومن النتائج السابقة يمكن لمربى النبات أن يستخدم هذه المميزات لتصميم برنامج تربية مناسب من أجل إنتاج أصناف محسنة في الأجيال الانعز الية المتقدمة للهجن المتفوقة.

[^0]: *,** Significant and highly significant at 0.05 and 0.01 probability levels, respectively .
 $\mathrm{H}=$ The highest value $\quad \mathrm{L}=$ The lowest value

