EFFECT OF GROWTH REGULATORS IN CONTROLLING OF PEANUT ROOT ROT DISEASES AND COMPARED TO FUNGICIDES TREATMENT

Metwally, A.H.¹; E.Y. Mahmoud¹; Samia Y.M. Shokry² and Zeinab N. Hussin¹
1- Plant Pathology Res. Ins., Agric. Res. Center, Giza., Egypt
2- Institute of African Research and Studies, Cairo Univ., Cairo, Egypt

ABSTRACT

Greenhouse and field experiments were conducted in 2003 and 2004 to study the effect of growth regulators, which included Indole Butyric acid (IBA), Cycocel (CCC) and Gibberellic acid (GA₃) at 50, 100 and 200 ppm in reducing of peanut root rot and compared to fungicides treatment. All tested growth regulators clearly affected on the incidence of damping-off, wilt and root rot disease, under greenhouse and field conditions Indole Butyric acid (IBA) followed by Cycocel (CCC) at 200 ppm were the most effective treatments in reducing peanut infections with damping-off, wilt and root rot, while treatment with Gibberellic acid (GA₃) at 200 ppm recorded the highest infection compared to other treatments. There were positive relationship between increasing the concentration of IBA and CCC and their effect on incidence of damping-off, wilt and peanut root rot, while with GA₃ this relationship was negatively. All tested fungicides and commercial biocides reduced percentage of damping-off, wilt and peanut root rot diseases and consequently increasing percentage of healthy survival plants, Vitavax-Thiram followed by Rhizolex-T recorded the highest effect in reducing damping-off wilt and root rot of peanut under greenhouse and field conditions.

This study clearly showed that there is no clear differences between the efficacy of growth regulators and fungicides effect in reducing peanut root rot diseases especially with the damage effect of fungicides on the environment.

INTRODUCTION

Damping-off, wilt and root rot diseases are among the most destructive diseases attacking peanut in Egypt (Yehia et al., 1979). The damage of these diseases not only lies in affecting the yield, quantitatively infestation with causal pathogens year after year consequently, growing peanuts in these soil becomes unprofitable (Yehia et al., 1979, Al-Ahmer et al., 1989 and Hassan and Frederick, 1995). These diseases also affect plant stand in the field (Fancelli and kimati, 1986 and Sharma and Bhowmik, 1986) plant growth, seed yield and seed oil content (Zayed et al., 1986, Sharma and Bhowmik, 1986 and 1987 and Hilal et al., 1990).

The role of plant growth regulators in plant diseases is not clearly identified. There is increasing evidence that both the pathogen and the host have the capacity to synthesize various plant growth regulators (Singh et al., 1997 and El-Masri et al., 2002). On the other hand, many authors studied the effect of growth regulators on linear growth, sporulation and sclerotial formation of pathogens and they stated that,
auxins such as IAA, IBA and NAA are a potential antifungal (Nakamura et al., 1978, Tomita et al., 1984, Michniewicz and Rozej, 1988 and Khalifa, 2003). Marei, (2000) reported that, all growth substances tested greatly reduced peanut pod rots caused by M. phaseolina, Fusarium spp., S. rolfsii, R. solani, Aspergillus spp. In all growth substances, apparently healthy pod was increased, parallel and proportional with increasing concentration. Spraying peanut with growth regulators (IAA, GA₃ and CCC) significantly reduced leaf spots; root and pod rot diseases compared to untreated control in both successive seasons (Khalil, 2002).

Several reports indicated the efficiency of fungicides in reducing peanut root rot and wilt (El-Deeb et al., 1985, Barnes et al., 1990 and Mahrous, et al., 1993). Benlate markedly decreased disease incidence of peanut wilt and root rot when used as seed treatment (Saleh, 1997). El-Deeb and Ibrahim (1998) recorded that, using seed dressing fungicides significantly decreased pre- and post emergence damping-off and pod root diseases. Rizoxol-T and Vitavax-Thiram gave the highest percentage of healthy survival plants. Rizoxol-T (50%) was the best fungicide in reducing peanut root rot and wilt in both seasons, under greenhouse and field experiments (El-Wakil and Ghonim, 2000). While El-Deeb et al., (2002) showed that, peanut root rot was as low as 8.24% in greenhouse and 6.67% in field under fungicidal seed treatment (Rizoxol-T, Vitava- Thiram and Tospin-M 70) compared to 14.94% and 11.33% with the alternative compounds (Plantguard, Rizo-N and Saponin).

The aim of this research is an attempt to study the effect of growth regulators in reducing peanut root rot diseases and compared to treatment with fungicides.

MATERIAL AND METHODS

1. Isolation and purification of the causal organism (s):

 Peanut plants showing symptoms of root rot disease were collected from different locations namely Beni-Suef, Giza, Ismailia and Nobaria. The infected roots were washed thoroughly with tap water, cut into small pieces (1 cm.) each surface disinfested with sodium hypochlorite 2 % for two min., re-washed several times with sterilized water, dried between folds of sterilized filter paper, and were placed onto potato dextrose agar plates (PDA) supplemented with streptomycin-sulfate (100 µg/ml). Petri dishes were incubated at 28°C for five days. The growing fungi were purified using the hyphal-tip and single sporule techniques (Brown, 1924 and Hawker, 1960)

2. Identification of causal organism (s):

 Identification of the isolated fungi was carried out based on taxonomic criteria for these fungi as described by Barentt and Hunter (1977) for the genera of imperfect fungi, Ellis (1976) for Macrophomina phaseolina, Booth (1977) for Fusarium spp. Maren and Johan (1988) for Aspergillus spp. and Sneh et al., (1992) for Rhizoctonia solani.
3. Preparation of fungal inoculum:

Inocula of isolates of F. solani, F. oxysporum, M. phaseolina, R. solani, Sclerotium rolfsii were prepared using sorghum - coarse sand - water (2:1:2 v/v) medium. The ingredients were mixed, bottled and autoclaved for 2 hours at 1.5 air pressure. The sterilized medium was inoculated using agar discs, obtained from the periphery of 5-day-old colony of each of the isolated fungi. The inoculated media were incubated at 28°C for 15 days and were then used for soil infestation.

4. Soil Infestation:

Inoculum of each isolate of F. solani, F. oxysporum, M. phaseolina, R. solani and S. rolfsii was mixed thoroughly with the soil surface of each pot, at the rate of 2% w/w, and was covered with a thin layer of sterilized soil. The infested pots were irrigated and kept for 7 days before sowing.

5. Disease assessment

Disease assessment was recorded as percentage of damping-off (pre- and post emergence) after 15 days from planting using the following formula:

\[\% \text{ damping-off} = \frac{\text{pre-emergence} + \text{post emergence}}{\text{No. of planted seeds}} \times 100 \]

The wilted plants and root rot plants were recorded after 45 days and during the harvest time, healthy survival plants were recorded using the following formula:

\[\% \text{ Healthy survival plants} = \frac{100 - (\% \text{ damping-off} + \% \text{ wilted plants} + \% \text{ root rot plants})}{(\% \text{ damping-off} + \% \text{ wilted plants} + \% \text{ root rot plants})} \]

6. Effect of growth regulators as inducer resistance:

These experiments were carried out to evaluate the efficiency of three growth regulators, i.e. Gibberellic acid 92% ["GA3", Berelex tablets, Imprical Industries Plc, plant protection division (ICI), England], Indole butyric acid 99% ["IBA", Aldrich chemical Company, England] and Cicocel 40% ["CCC", Aldrich chemical company, England] against peanut root rot and wilt under artificial inoculation in greenhouse conditions and natural infested field.

6.1. Greenhouse experiment:

Each growth regulator was used as soaking treatment, at three different concentrations 50, 100 and 200 ppm. Peanut seeds, cv. Giza 5, were soaked for 4 hours in each tested concentration of the above mentioned growth regulators. The wetted seeds were left in air cabinet for 24 hours before sowing. Treated seeds were sown in pots (50 cm diam) filled with soil previously infested with the pathogenic fungi. Ten seeds were sown per each pot and untreated seeds were soaked in sterilized water and were sown as control. Five replicates were used for each treatment. Disease incidences were determined as previously mentioned.

6.2. Field experiment:

Treated peanut seeds, with various growth regulators were sown in the field on the first week of May during seasons 2003 and
2004. The experiment was arranged in completely randomized block design with four replicates. Disease assessments were recorded as shown before.

7. Effect of some fungicides and chemicals biocides:

The effectiveness of some fungicides namely Benlate, Noblight, Rhizolex-T, Vitavax, (Table A) and two chemicals biocides (Plantaguard and Rhizo-N) were evaluated under artificial inoculation under greenhouse conditions and naturally infested soil in the field.

7.1. Greenhouse experiment:

Peanut cv. Giza 5 seeds treated as seed dressing with the fungicides Benlate 50 %, Rhizolex-T 50%, Vitavax-T 75% and Noblight 50% at the rate of 3g/kg seed (Table A) or the commercial biocides Plantaguard (Trichoderma spp. 3 x 10^6 spore/ml) and Rhizo-N (Bacillus subtilis 3 x 10^6 c.f.u/ml) at the rate of 5 ml and 5g/kg seed, respectively. The desired amount of each fungicide or biocide was thoroughly mixed with peanut seeds in plastic bags with Arabic gum solution (1%) as sticker and shacked for 10 min. to insure uniform coverage of seed with the tested compounds. Treated seeds were then allowed to dry for 24 hours before sowing. Seeds treated with Arabic gum solution were used as control.

Table (A): Fungicides used their active ingredient, common name, chemical constitution, method and rate of application.

<table>
<thead>
<tr>
<th>Fungicides, (Manufacture), and Active Ingredient</th>
<th>Common or trade name</th>
<th>Chemical composition</th>
<th>Method of application</th>
<th>Rate of application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benlate, (Du Pont Co., France), 50% W.P.</td>
<td>Benomyl</td>
<td>Methyl-1-(butylcarbamoyl)-2-benzimidazole-carbanate</td>
<td>Seed dressing</td>
<td>3 g/kg seed</td>
</tr>
<tr>
<td>Rizolex-T, (Sumitaamo Chemical Co., LTD Osaka Japan), 50% W.P.</td>
<td>Tolclofos-methyl 20% + thiram 30%</td>
<td>1-o-(2,6-dichloro-4-methyl-phenyl-o, o-dimethyl phosphorothioate + thiram (30%)-Bis-(dimethyl-thiocarbamoyl)-disulphide</td>
<td>Seed dressing and soil treatment</td>
<td>3 g/kg seed 2 kg/fed</td>
</tr>
<tr>
<td>Vitavax-T, (Unirocal England), 75%</td>
<td>Carathin 37.5% and thiram 37.5%</td>
<td>5,6-dihydro-2-methyl-N-phenyl-1,4-oxathiin-3-carboxyamide-Bis-(dimethyl-thiocarbamoyl)-disulphide</td>
<td>Seed dressing and soil treatment</td>
<td>3 g/kg seed 2 kg/fed.</td>
</tr>
<tr>
<td>No-Blight, (Kafr El- Ziat Co., Egypt), 50% W.P.</td>
<td>Thiram</td>
<td>Bis-(dimethyl-thiocarbamoyl)-disulphide</td>
<td>Seed dressing</td>
<td>4 g/kg seed</td>
</tr>
</tbody>
</table>
Any of the treated and untreated peanut seeds were sown in pots containing soil infested with mixture of pathogenic fungi at the rate of 10 seeds/pot, five pots were used for each treatment. Disease assessments were carried out as previously mentioned.

7.2. Field experiment:
Treated peanut seeds, with several fungicides (Benlate 50 %, Rhizolex-T 50%, Vitavax-T 75% and Noblight 50% at the rate of 3g/kg seed) and commercial biocides (Plantguard and Rhizo-N at the rate of 5 ml and 5g/kg seed, respectively) were sown in the field on the first week of May during seasons 2003 and 2004. The experiment was arranged in completely randomized block design with four replicates. Disease assessments were recorded as shown before.

8. Statistical analysis:
The data were statistically analyzed by analysis of variance (ANOVA) using the statistical Analysis System (SAS Institute, inc, 1996). Means were separated by Duncan’s Multiple Range Test at P \leq 0.05 levels.

RESULTS

1. Effect of growth regulators:
These experiments were carried out to evaluate the efficiency of three growth regulators, Indole Butyric acid (IBA), Cicocel (CCC) and Gibbrellic acid (GA3) at three different concentrations against peanut damping-off, wilt and root rot under artificial soil infestation in the greenhouse and in natural infested field.

1.1. Under greenhouse conditions:
Data presented in Table (1) showed that, there was a significant effect of all growth regulators at their tested concentrations in reducing percentage of all studied disease parameters and consequently increasing percentage of healthy survival plants. Indole Butyric acid (IBA) followed by Cicocel (CCC) at 200 ppm were the most effective treatments in reducing peanut infections with damping-off, wilt and root rot diseases. While treatment with Gibbrellic acid (GA3) at 200 ppm recorded the highest damping-off, wilt and root rot infection of peanut compared to other treatments. In general IBA followed by CCC at 200 ppm gave the highest percentage of healthy survival plants.

Data showed the relationship between increasing the concentration of growth regulators and their effect on the incidence of the studied parameters of the disease. Data clearly indicated that, increasing concentration of IBA and CCC caused an increase in their reducing efficiency of damping-off, wilt and root rot incidence. On the other hand increasing the concentration of GA3 up to 100 ppm led to increase the incidence of damping-off, wilt and root rot.
Table 1: Effect of growth regulators, as seed soaking treatment, on damping-off, wilt, and root rot of peanut cv. Giza 5 under greenhouse conditions in artificially infested soil.

<table>
<thead>
<tr>
<th>Growth regulators</th>
<th>Conc. (ppm.)</th>
<th>Disease incidence (%)</th>
<th>Survival (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Damping-off</td>
<td>Wilt</td>
</tr>
<tr>
<td>CCC</td>
<td>50</td>
<td>20 cd</td>
<td>8 dc</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>18 ed</td>
<td>6 d</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>16 e</td>
<td>6 d</td>
</tr>
<tr>
<td>GA₃</td>
<td>50</td>
<td>22 bc</td>
<td>10 c</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>20 cd</td>
<td>8 dc</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>24 b</td>
<td>14 b</td>
</tr>
<tr>
<td>IBA</td>
<td>50</td>
<td>18 ed</td>
<td>8 dc</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>14 e</td>
<td>6 d</td>
</tr>
<tr>
<td>Control</td>
<td>200</td>
<td>10 f</td>
<td>4 d</td>
</tr>
</tbody>
</table>

x) Soil in each pot was infested with a mixture of pathogenic fungi at the rate of 2% (w/w).
y) Growth regulators were used as seed soaking treatment for 4 hrs. before sowing.
z) Means in each column with the same letter are not significantly different according to Duncan's Multiple Range Test (P = 0.05).

1.2. Under field conditions:

Data presented in Table 2 indicated that, all tested growth regulators clearly affected the incidence of damping-off, wilt and root rot diseases and there was a significant decrease in disease parameters compared to control during the two growing seasons (2003 and 2004) except, gibberelic acid at 200 ppm while had no effect on the incidence of peanut root rot. Indole butyric acid at 200 ppm was the best treatment in reducing damping-off and wilt, while Cicocel at 200 ppm was the most effective treatment in reducing peanut root rot during the two growing seasons 2003 and 2004. Indol butyric acid followed by Cicocel at 200 ppm gave the highest percentage of healthy survival plants compared to other treatments in both seasons. In general, gibberelic acid at the three different concentrations gave the lowest effect on the incidence of the three disease parameters and gave the lowest percentage of healthy survival plants compared to other growth regulators at the same concentration.

Data also indicated that there were positive relationship between increasing the concentration of IBA and CCC and their effect on incidence of damping-off, wilt and peanut root rot diseases. This relationship differed in the case of GA₃ when its concentration was increased up to 100 ppm, where the incidence of the diseases parameters increased.

Regarding the effect of growth regulators at different concentrations on the total pod yield, data indicated that, all tested growth regulators showed significant increase in total pod yield compared to control during the two growing seasons. Indole butyric acid at 200 ppm gave the highest total peanut pod yield compared to the other treatments in both seasons (Tables 2).
Table (2): Effect of growth regulators, as seed soaking treatment, on damping-off, wilt, and root rot of peanut cv. Giza 5 under field conditions during season 2003 x).

<table>
<thead>
<tr>
<th>Growth regulators</th>
<th>Conc. (ppm)</th>
<th>Disease incidence (%)</th>
<th>Survival (%)</th>
<th>Pod yield (kgfed.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Damping-off</td>
<td>Wilt</td>
<td>Root rot</td>
</tr>
<tr>
<td>CCC</td>
<td>50</td>
<td>15.11 bc</td>
<td>6.78 bcd</td>
<td>8.00 cd</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>12.71 cd</td>
<td>4.91 def</td>
<td>5.95 cde</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>10.41 de</td>
<td>3.50 fg</td>
<td>4.08 e</td>
</tr>
<tr>
<td>GA3</td>
<td>50</td>
<td>18.61 a</td>
<td>8.28 bc</td>
<td>9.00 bc</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>13.41 cd</td>
<td>6.19 cde</td>
<td>12.17 ab</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>17.21 ab</td>
<td>8.62 b</td>
<td>13.77 a</td>
</tr>
<tr>
<td>IBA</td>
<td>50</td>
<td>13.91 c</td>
<td>5.11 def</td>
<td>7.47 cd</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>9.13 ef</td>
<td>4.41 ef</td>
<td>7.06 cde</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>6.51 f</td>
<td>2.11 g</td>
<td>5.65 de</td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td>20.41 a</td>
<td>12.43 a</td>
<td>13.56 ab</td>
</tr>
</tbody>
</table>

Season 2004

<table>
<thead>
<tr>
<th>Growth regulators</th>
<th>Conc. (ppm)</th>
<th>Disease incidence (%)</th>
<th>Survival (%)</th>
<th>Pod yield (kgfed.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Damping-off</td>
<td>Wilt</td>
<td>Root rot</td>
</tr>
<tr>
<td>CCC</td>
<td>50</td>
<td>17.21 bc</td>
<td>8.17 b</td>
<td>11.31 bc</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>15.31 cd</td>
<td>6.57 bcd</td>
<td>7.41 de</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>13.20 de</td>
<td>3.41 fe</td>
<td>3.78 f</td>
</tr>
<tr>
<td>GA3</td>
<td>50</td>
<td>20.01 ab</td>
<td>8.11 b</td>
<td>11.55 bc</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>16.31 c</td>
<td>6.01 bcd</td>
<td>12.65 ab</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>18.00 bc</td>
<td>7.91 bc</td>
<td>14.78 a</td>
</tr>
<tr>
<td>IBA</td>
<td>50</td>
<td>15.11 cd</td>
<td>5.33 cde</td>
<td>9.73 cd</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>11.11 ef</td>
<td>5.31 de</td>
<td>8.28 de</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>8.31 f</td>
<td>2.40 f</td>
<td>6.38 e</td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td>22.70 a</td>
<td>12.71 a</td>
<td>13.68 ab</td>
</tr>
</tbody>
</table>

x) Four replicates were used for each treatment; the area of field plot was 10.5 m².
y) Growth regulators were used as seed soaking treatment for 4 hr. before sowing.
z) Means in each column with the same letter are not significantly different according to Duncan's Multiple Range Test (P = 0.05).

2. Effect of seed treatment with some different fungicides and biocides against damping-off, wilt and root rot:

Four fungicides and two commercial biocides were used as seed treatment before sowing in artificially infested soil with pathogenic fungi under greenhouse conditions and in natural infested soil under field conditions during the two growing seasons 2003 and 2004.

2.1. Under greenhouse conditions:

Data presented in Table (4) indicated that, Vitavax had high significant effect in reducing damping-off, wilt and root rot diseases of peanut compared to the other treatments. Moreover it recorded the highest percentage of healthy survival plants. On the contrary Rhizo-N and Benlate recorded the highest percentage of infections regarding damping-off, wilt and root rot diseases, also they gave the lowest percentage of healthy survival plants compared to the other treatments.
Concerning the effect of treating peanut seeds with different fungicides and commercial biocides on percentage of damping-off, wilt and root rot of peanut plants grown under greenhouse and field conditions, there was a clear effect of all tested fungicides and commercial biocides in reducing percentage of all parameters of disease incidence and consequently increasing percentage of healthy survival plants. This is in agreement with Hassan and Federick, (1995) who stated that, peanut seed generally requires treatment with fungicides to assure an adequate plant stand in the field. Results also showed that, the most effective fungicide was Vitavax-Thiram followed by Rhizoxin-T. Similar findings were obtained by El-Deeb and Ibrahim (1998), El-Wakil and Ghonim, (2000), Abdel-Ghany, (2001) and El-Deeb et al., (2002).

REFERENCES

تأثیر منظمات النمو على مكافحة أمراض أععان الجذور في الفول السوداني

ومقارنتها بالمعاملة بالمبيدات.

أحمد حسن تي، محمد الدينب يوسف محمود، سامية يحيي محمود شكري، زينب نسر الدين حسين

1- معهد بحوث أمراض النباتات- مركز البحث الزراعي- الجيزة.
2- معهد البحوث والدراسات الأفريقية- جامعة القاهرة.

أجريت هذه الدراسة تحت ظروف العدوي الصناعية بالصوبة والعدوي الطبيعية بالحقل خلال موسمي 2003 و2004. لقد تأثير منظمات النمو حمض الأميدو بيبتريرك وحساس وحمض الجلوكوليك عند تركيز 50 و200 جزء في المليون على أععان أعنان الجذور. معدل الفول السوداني ومقارنة تأثيرها بالمبيدات. هذا وقد أعطت كل منظمات النمو المختارة قدرة على خفض الإصابة بموت البذور واععان الجذور والبذور في الفول السوداني وزراعة نسباً النباتات السليمة سواء في تجارب الصوبة أو الحقل، وكان حمض الأميدو بيبتريرك وحساس وحمض الجلوكوليك عند تركيز 200 جزء في المليون هما الأكثر تأثيراً في خفض نسبة الإصابة بموت البذور والبذور في الفول السوداني بينما حمض الجلوكوليك عند تركيز 200 جزء في المليون كان الأقل تأثيراً في خفض نسبة الإصابة. وقد أوضح استنتاج الدراسة أن هناك علاقة إيجابية بين زيادة تركيز كم من حمض الأميدو بيبتريرك وحساس وزراعة نسباً أععان أعنان الجذور والبذور في الفول السوداني بينما كانت هذه العلاقة سلبية عند زيادة تركيز حمض الجلوكوليك. أظهرت كل منظمات الفول السوداني وزراعة نسباً أععان أعنان الجذور والبذور في الفول السوداني وزراعة نسباً أعنان النباتات السليمة. وقد سجل كلاً من الفيتامينات- الفيتامينات- الفيتامينات- أن نسباً مكافحة بموت البذور واععان أعنان الثمار في الفول السوداني سواء في تحارب الصوبة أو الحقل.

وقد أظهرت الدراسة أنه ليس هناك فرق واضح بين تأثير كل من منظمات النمو والمبيدات على خفض الإصابة بأمراض أعنان الجذور في الفول السوداني خاصة في ظل وجوه الأثر الضار للمبيدات على البيئة.