ESTIMATE OF HETEROSIS AND COMBINING ABILITY OF SOME WHITE INBRED LINES OF MAIZE (Zea mays L.)

Katta, Y.S.; M.S.M. Abd El-Aty; M.A. El-Hity and M.M. Kamara
Agronomy Dept., Fac. Agric., Kafr El-Sheikh Univ.

Abstract

This research was carried out at the Experimental Farm, Faculty of Agric., Kafr El-Sheikh Univ. The aim of the experiment was to study heterosis and combining ability for the most important traits of maize (Tasselling and silking dates, plant and ear heights, ear length, ear diameter, number of rows/ear, number of kernels/row, 100 grain weight and grain yield (ardab/fed.) Seven inbred lines of corn were crossed in one half diallel cross in 2004. The resulted 21 single crosses in addition to three recommended commercial crosses, were grown in a randomized complete block design in 2005 season. The variation among single crosses were partitioned into gca and sca, using griffing's method 4 model 1 . The results are summarized as follows: 1. Highly significant differences were found among the studied inbred lines, also the gca effects were significant for all studied traits and the sca effects also, were, significant, except for 100-grain weight. 2. The cross ($\mathrm{P}_{5} \times \mathrm{P}_{6}$) was the earliest for tasseling and silking dates. The crosses $\left(P_{3} \times P_{7}\right)$ and $\left(P_{5} \times P_{7}\right)$ were of desirable performance for plant and ear heights. Mean while the cross ($\mathrm{P}_{1} \times \mathrm{P}_{2}$) was the best cross for ear length and number of kernels per row and grain yield/fed. and cross $\left(\mathrm{P}_{4} \times \mathrm{P}_{6}\right)$ for ear diameter and number of rows/ear and the single cross ($\mathrm{P}_{1} \times \mathrm{P}_{4}$) for 100-grain weight. 3. The gca/sca ratio revealed that importance of additive genetic variance in the inheritance of all studied traits, except plant height and number of rows/ear. 4. The best general combining ability for earliness were lines $P_{3}, P_{4}, P_{5}, P_{6}$ and P_{7}, while for grain yield ardab/fed. were lines P_{1}, P_{2} and P_{3}. 5. Estimate of specific combining ability effects indicated that the best crosses were 3×4 for tasseling date, silking date and ear height, the cross $P_{2} \times P_{7}$ for plant height, the crosses $P_{3} \times P_{6}, P_{4} \times P_{7}, P_{4} \times P_{6}, P_{6} \times P_{7}$ and $\left(P_{1} \times P_{3}\right)$ for ear length, ear diameter, number of rows per ear, number of kernels per row and weight and 100-kernels, respectively, while the cross (1×2) showed the best desirable sca effects for grain yield ard./fed. 6. The cross ($\mathrm{P}_{5} \times \mathrm{P}_{6}$) showed negative and significant useful heterosis for tasseling and silking dates relative to the earlier check, while the crosses ($\mathrm{P}_{3} \times$ P_{7}) and ($P_{5} \times P_{7}$) had negative and significant useful heterosis relative to the shortest check for plant and ear heights, respectively. The cross $\left(\mathrm{P}_{1} \times \mathrm{P}_{2}\right)$ for ear length and number of kernels per row, ($\mathrm{P}_{4} \times \mathrm{P}_{6}$) for ear diameter and number of rows per ear, $\left(\mathrm{P}_{1} \times \mathrm{P}_{4}\right)$ for weight of 100 kernels, and $\left(\mathrm{P}_{1} \times \mathrm{P}_{2}\right)$ for grain yield ardab/fed. showed positive and significant heterosis relative to superior check in these traits. 7. The best cross $\left(\mathrm{P}_{1} \times \mathrm{P}_{2}\right)$ was the superior one which significantly outyielded the three checks.

INTRODUCTION

Corn (Zea mays L.) is one of the major cereal crops in Egypt and the world, which ranks the third one surpassed only by wheat and rice.

In recent years, the major objective of maize breeding program in Egypt is to develop high yielding maize hybrids to cover the increasing consumption of maize in food, animal feeding and poultry industry. Estimation

Katta, Y.S. et al.

of genetic variance and its components are of great importance for the improvement of maize. The technique used extensively in maize breeding programs is aiming to classify parental lines in terms of their ability in the combination for producing hybrid of corn. The total genetic variation is portioned into the effects of general and specific combining ability (g.c.a. and s.c.a.) in this respect. General and specific combining abilities were first defined by Sparague and Tatum (1942) also Hallauer and Miranda (1981) stated that both general and specific combining ability effects should be taken in consideration when planning maize program to produce and release new inbreds and crosses. Several investigators studied the general and specific combining ability of growth yield and its attributes. Hassaballa et al. (1980), El-Hosary (989), Beck et al. (1991), El-Absawy (2000), Amer et al. (2003) and Abd El-Aal and Abdallah (2006), reported that gca was more important than sca. On the contrary Nawar et al. (1981), Sedhom (1992), Mostafa et al (1996), Gaber (1997), Amer (2005) and Abd El-Aty and Darwish (2006) reported that sca was more important than g.c.a.

The main objectives of the present investigation are:

1. Identifying the best lines and their single crosses to be used in maize breeding programs.
2. Estimating general and specific combining abilities effects for newly developed inbred lines of white maize.
3. Estimating magnitude of heterosis (useful heterosis) relative to the best recommended commercial hybrids as checks.

MATERIALS AND METHODS

The present investigation was carried out at the Experimental Farm, Faculty of Agric., Kafr El-Sheikh University during 2004 and 2005 seasons, seven white maize inbred lines isolated from diverse origin of maize varieties and composites in the breeding program of Agronomy department. Faculty of Agric. Kafr El-Sheikh Univ. and also from the national maize program, A.R.C. named as; Line $101\left(P_{1}\right)$, line $102\left(P_{2}\right)$, line $103\left(P_{3}\right)$, line $104\left(P_{4}\right)$, line 105 $\left(P_{5}\right)$, line $106\left(\mathrm{P}_{6}\right)$ and line $107\left(\mathrm{P}_{7}\right)$ were used in this study.

In 2004 season, all possible cross combinations without reciprocals were made between the seven inbred lines giving a total of 21 crosses. In 2005, the $21 \mathrm{~F}_{1}$ crosses and three checks (S.C.10, T.W.C. 310 and T.W.C 324) were grown in a randomized complete block design with four replications. Plot size was two rows, 5 m long and 70 cm part with 25 cm hill spacing.

All cultural practices were applied as recommended. Random samples of 10 guarded plants in each plot which is designated as field plot were taken to evaluate; tasseling date, silking date (day). Plant height (cm), ear height (cm), ear length (cm), ear diameter (cm), number of rows/ear, number of kernels/row, weight of 100-grains (gm) and grain yield/plot which was transferred later to (ardab/fed.) (one ardab $=140 \mathrm{~kg}$ of grains) adjusted to 15.5% moisture content. General and specific combining ability estimates were measured using Griffing's (1956) diallel cross analysis designated as method-4, model-1. Agronomical or the useful heterosis (superiority) was
measured by comparing each cross with each of the check having the best desired trait in comparison (i.e. earliness, shortness etc.).

RESULTS AND DISCUSSION

Analysis of variance for all the studied traits are presented in Table (1) indicating that there were highly significant differences within all the studied traits indicating the presence of genetic variability in the material under study which lead to estimate combining ability. The mean squares associated with general (gca) and specific (sca) combining abilities were highly significant for all the studied traits except sca for 100-grain weight, indicating that both additive and non-additive gene action were involved in the inheritance of these traits.

The ratios of gca/sca exceeded the unit for all studied traits except of plant height (cm) and number of rows/ear, showing that additive gene effects were more important than that of dominance gene effects in the inheritance of these traits. These results are similar with those obtained by Nawar et al. (1988), Gomaa and Shaheen (1994), El-Sherbieny et al. (1996).

Mean performance of the $21 \mathrm{~F}_{1}$ crosses and the three checks for all the studied traits are presented in Table (2). The cross ($\mathrm{P}_{5} \times \mathrm{P}_{6}$) was the earlier cross, while the crosses ($P_{1} \times P_{2}$) and ($P_{1} \times P_{4}$) were the latest out of $21 \mathrm{~F}_{1}$ crosses.

Regarding to plant height, twelve single crosses were more shorter than the three checks and the shorter cross was the single cross ($\mathrm{P}_{3} \times \mathrm{P}_{7}$), while eight single crosses have lower ear placement than the three cheeks (lowest ear) for ear height and the best cross for lowest ear placement was the single cross ($\mathrm{P}_{5} \times \mathrm{P}_{7}$).

The mean values of ear length for the F_{1} crosses ranged from 16.3 cm for cross ($\mathrm{P}_{5} \times \mathrm{P}_{6}$) to 21.7 cm for cross $\left(\mathrm{P}_{1} \times \mathrm{P}_{2}\right)$ with an average of 19.6 cm . While the mean of the three checks was 20.45 cm which is larger than the grand mean of the crosses.

With respect to ear diameter (cm), the mean values varied from 4.4 cm for crosses $\left(\mathrm{P}_{5} \times \mathrm{P}_{7}\right)$ and $\left(\mathrm{P}_{2} \times \mathrm{P}_{3}\right)$ to 5.4 cm for cross $\left(\mathrm{P}_{4} \times \mathrm{P}_{6}\right)$ with an average of 4.8 cm while the mean of the three checks were 4.86 cm which is larger than the mean of the crosses. Regarding to number of rows/ear, the highest mean value of the F_{1} crosses was obtained from the cross ($P_{4} \times P_{6}$) (16.0), while the lowest mean value was obtained from the cross ($\mathrm{P}_{5} \times \mathrm{P}_{6}$) (12.3). The mean values of number of kernels/row varied from 35.8 for cross $\left(P_{3} \times P_{4}\right)$ to 47.0 for cross $\left(P_{1} \times P_{2}\right)$ with an average of 41.6 while the mean of the three checks were 42.7 which is larger than the grand mean of the crosses. The mean values of 100-grain weight ranged from 28.4 gm for cross $\left(\mathrm{P}_{5} \times \mathrm{P}_{7}\right)$ to 37.0 gm for cross $\left(\mathrm{P}_{1} \times \mathrm{P}_{4}\right)$ with an average of 32.6 gm while the mean of the three checks was 34.3 gm which is larger than the grand mean of the crosses, also the crosses $\left(P_{1} \times P_{2}\right)$ and $\left(P_{1} \times P_{6}\right)$ were superior in weight of 100-grain than the three checks.

Regarding to grain yield (ardab/fed.), the mean values for the F_{1} crosses ranged from 27.4 (ardab/fed.) for cross ($\mathrm{P}_{5} \times \mathrm{P}_{6}$) to 40.75 (ardab/fed.) for cross ($\mathrm{P}_{1} \times \mathrm{P}_{2}$), also nine out of 21 crosses outyielded the grand mean.

Katta, Y.S. et al.

1
J. Agric. Sci. Mansoura Univ., 32 (9), September, 2007 2

Katta, Y.S. et al.

However, only three crosses significantly surpassed the best commercial cheek SC10 (37.6 ardab/fed.) and these crosses are $\mathrm{P}_{1} \times \mathrm{P}_{2}$ (40.75 ardab/fed.), $\mathrm{P}_{1} \times \mathrm{P}_{4}$ (38.1 ardab/fed.) and $\mathrm{P}_{1} \times \mathrm{P}_{7}$ (37.8 ardab/fed.), where the differences among the first cross and the three checks were only significant while the other two crosses have no significant differences with the three checks.

The estimates of the general combining ability effects of the parental inbreds for all studied traits are presented in Table (3).

The results revealed that gca effects showed desirable significant negative values for tasseling date, for the inbreeds 3, 5, 6, and 7 toward earliness. While the inbred lines 2, 3, 5, 6 and 7 exhibited significant negative gca effects for silking date. These inbred lines were considered the best, combiners for earliness.

The gca effects for plant height ranged from -11.97 for the line 3 to 15.23 for the line 1 , and the inbreds 2,3 and 6 showed significant negative desirable gca effects for plant height (toward shortness). On the other hand, the line P_{3}, P_{5}, P_{6} and P_{7} showed desirable significant negative gca values for ear height (toward lower ear placement). These inbred lines were considered the best combiners for the above-mentioned traits.

The parental lines P_{1} and P_{2} expressed highly significant positive gca effects for ear length and number of kernels/row.

For number of rows/ear; lines 2, 4 and 7 were considered the good combiners, as they exhibited significant positive gca effects. Inbred lines 1 and 4 showed highly significant positive gca effects for 100-grain weight.

Regarding to grain yield (ardab/fed.), the lines P_{1}, P_{2} and P_{4} had significant positive gca effects, these lines possessed favorable breeding estimates (good combiner) and it could be used as good breeding materials in hybrid breeding program. These findings were also found by El-Shamarka (2000), Amer et al. (2003), Devi and Prodhan (2004), Amer (2005) and Abd El-Aal and Abdallah (2006) and Abd El-Aty and Darwish (2006).

The estimates of specific combining ability effects (sca) for the F_{1} crosses for all the studied traits are shown in Table 4. Significant desirable sca effects were detected for the 21 crosses where for tasseling date 4 crosses, silking date 6 crosses, plant height 6 crosses, ear height 3 crosses, ear length 4 crosses, number of rows/ear 4 crosses, number of kernels/row 3 crosses, 100-grain weight one cross and 6 crosses for grain yield ard./fed. However, it could be concluded that the best desirable crosses for each trait could be mentioned as; the crosses ($\mathrm{P}_{3} \times \mathrm{P}_{4}$) for tasseling and silking dates towards earliness, ($\mathrm{P}_{2} \times \mathrm{P}_{7}$) for plant height, $\left(\mathrm{P}_{5} \times \mathrm{P}_{7}\right)$ for ear height, $\left(\mathrm{P}_{3} \times \mathrm{P}_{6}\right)$ for ear length, ($P_{4} \times P_{6}$) for number of rows/ear, $\left(P_{6} \times P_{7}\right)$ for number of kernels/row, ($\mathrm{P}_{1} \times \mathrm{P}_{3}$) for 100-grain weight and ($\mathrm{P}_{1} \times \mathrm{P}_{2}$) for grain yield ardab/fed. These crosses can be of practical importance in maize breeding programs.

Useful heterosis relative to the superior check for all the studied traits are presented in Table 5.
J. Agric. Sci. Mansoura Univ., 32 (9), September, 2007 3

Katta, Y.S. et al.

4
J. Agric. Sci. Mansoura Univ., 32 (9), September, 2007 5

Katta, Y.S. et al.

The useful or agronomic or economic heterosis refer to the superiority of any cross under study over the best check (or all cheeks) relative to the desired trait (i.e. earliness, shortness of plant or ear height etc.). so, with respect to tasselling and silking dates, useful heterosis relative to the earlier check (T.W.C. 310) ranged from -8.10 and -8.50 for cross $P_{5} x$ P_{6} to 6.50 and 5.70 for cross $P_{1} \times P_{2}$, respectively. Also there were 9 crosses showed desirable significant negative useful heterotic effects.

Highly significant negative desirable heterotic effect values relative to the shortest check (T.W.C. 324) were shown in single crosses ($\mathrm{P}_{2} \times \mathrm{P}_{7}$), ($\mathrm{P}_{3} \mathrm{x}$ $\left.P_{4}\right),\left(P_{3} \times P_{7}\right)$ and ($P_{4} P_{6}$) for plant height, the crosses ($\left.P_{3} \times P_{7}\right)$, $\left(P_{5} \times P_{6}\right)$ and $\left(P_{5} \times P_{7}\right)$ for ear height. The crosses $\left(P_{2} \times P_{4}\right),\left(P_{4} \times P_{5}\right),\left(P_{4} \times P_{6}\right)$ and $\left(P_{4} \times\right.$ $\left.P_{7}\right)$ gave desirable heterotic effects for ear diameter. The crosses $\left(P_{1} \times P_{2}\right)$ and ($\mathrm{P}_{4} \times \mathrm{P}_{6}$) gave the highest desirable and significant positive values of economic heterosis for number of rows/ear relative to the superior check (T.W.C. 310).

With regard to number of kernels/row, the best crosses were ($P_{1} x$ P_{2}) and ($P_{1} \times P_{3}$) where they gave significant positive useful heterosis relative to the superior check (S.C. 10).

Concerning the grain yield ardab/fed., the useful heterosis of each cross of the 21 crosses relative to each of the three checks were calculated and the results are presented in Table (5).

It could be concluded from the Table 5, the best superior cross under study is $\left(\mathrm{P}_{1} \times \mathrm{P}_{2}\right)$ which outyielded by percentages of $8.37,10.37$ and 10.13% over three checks SC10, TWC310 and 324 respectively.

This result indicates that this cross (hybrid) must be evaluated more comparing with the highest yielded commercial hybrids (single or three crosses) to confirm its superiority which leads to be useful hybrid and could be added to the commercial hybrids.

Significant negative heterosis effects for earlines was previously detected by Abd El-Aty (1987), El-Hosary et al. (1999), El-Absawy (2000) and Abd El-Aty and Darwish (2006), while significant positive heterotic effects for grain yield/plant ardab/fed. and other agronomic traits was previously detected by Nawar et al. (1990); El-Hosary et al. (1999); El-El-Absay (2000); Abd El-Aty and Darwish (2006)

REFERENCES

Abd El-Aal, A.M.M. and T.A.E. Abdallah (2006). Genetic analysis of combining ability for grain yield and other agronomic traits in maize. First field Crops Conference 22-24 August (82-88).
Abd El-Aty, M.S.M. (1987). Estimates of heterosis and combining ability of a diallel et of maize varietal crosses (Zea mays L.) under four environmental conditions. M.Sc. Thesis, Fac. Agric. Kafr El-Sheikh. Tanta Univ
Abd El-Aty, M.S.M. and I.H.I. Darwish (2006). Combining ability and heterosis and their interaction with three nitrogen levels in some yellow maize inbred lines. J. Agric. Res. Tanta Univ., 32(4): 808-830.

Amer, E.A. (2005). Estimates of combining ability using diallel crosses among eight new maize inbred lines.J.Agric. Res. Tanta Univ., 31(2): 232-223.
Amer, E.A.; A.A. El-Shenawy and A.A. Motawei (2003). Combining ability of new maize inbred lines via line x tester analysis. Egypt. J. Plant Breed. 7(1): 229-239.
Beck, D.L.; S.K. Vasal and J. Crossa (1991). Heterosis and combining ability among subtropical and temperature intermediate maturity maize germplasm crop. Sci., 31: 68-73.
Devi, TR. and H.S. Prodhan (2004). Combining ability and heterosis studies in high oil maize (Zea mays L.) genotypes Indian J. gene and PI. Breed, 64(4): 323-324.
El-Absawy, E.A. (2000). Evaluation of some new inbred lines and their crosses of maize to general and specific combining abilities under two nitrogen levels.Proc.9 ${ }^{\text {th }}$ Conf.,Agron.,Minufiya Univ., 1-2 Sept. 223-237.
El-Hosary, A.A. (1989). Heterosis and combining ability of six inbred lines of maize in diallel crosses over two years.Egypt.J. Agron., 14(1-2): 47-88.
El-Hosary, A.A.; S.A. Abdel-Sattar and M.H. Motawea (1999). Heterosis and combining ability of seven inbred lines of maize in diallel crosses over two years. Minufiya J. Agric. Res. Vol. 29(1): 65-84.
El-Shamarka, Sh.A. (2000). Analysis of diallel crosses of some new promising maize inbred lines for some agronomic characters. Minufiya. J. Agric. Res. 25(26): 1479-1494.

El-Sherbieny, H.Y.Sh, G.M.A. Mahgoub and M.A.N. Mostafa (1996). Combining ability between newly developed white inbred lines of maize. Bull. Fac. Agric. Univ. Cairo, 47: 369-378.
Gaber, A.F. (1997). Breeding for downy mildew disease resistance in maizePh.D. Thesis, Fac. Agric., Cairo Univ., Egypt.
Gomaa, M.A.M. and A.M.A. Shaheen (1994). Studies on heterosis and combining ability in maize (Zea mays L.). Egypt. J. Agron., 19: 65-79.
Griffing, J.B. (1956). Concept of general and specific combining abilities in relation to diallel systems. Auster. J. Biol. Sci. 9: 463-493.
Hallauer, A.R. and Miranda (1981). Quantitative genetics in maize breeding. Iowa State Press. Ames. U.S.A.
Hassaballa, E.S.; M.A. El-Morshidy; M. Khalifa and E.M. Shalaby (1980). Combining ability analysis in maize. I. Flowering Bull. Fac. Agric. AinShams Univ., (No. 1291): 8 pp.
Mostafa, M.A.; A.A. Abdl-Aziz; G. Mahgoub and H.Y.S. El-Sherbiny (1996). Diallel analysis of grain yield and natural resistance to late wilt disease in newly developed inbred lines of maize. Bull., Fac. Agric., Cairo Univ., 47: 393-404.
Nawar, A.A.; A.A. Aboel-Nass and M.E. Gomaa (1981). Heterosis and general vs. specific combining ability among inbred lines of corn. Egypt. J. Genet Cytol. 10: 19-29.
Nawar, A.A.; A.A. El-Hosary; H.A. Dawwam and F.A. Hendawy (1988). Influence of plant densities on the expression of heterosis and combining ability in maize (Zea mays L.). Minufiya J. Agric. Res. 13: 55-69.

Katta, Y.S. et al.

Nawar, A.A.; K.M. El-Sayed; A.N.M. Khalil and M.E. Ibrahim (1990). Variability of the heterotic effects in diallel maize hybrids under nitrogen fertilizer levels. Annals of Agric. Sci., Moshtohor, Zagazig Univ., 28(1): 115-130.
Sedhom, S.A. (1992). Development and evaluation of some new inbred lines of maize. Proc. $5^{\text {th }}$ Conf. Agron. Zagazig. 13-15 Sept., (1): 269-280.
Sprague, C.F. and L.M. Tatum (1942). General vs. specific combining ability in single crosses of corn. J. Amer. Soc. Agron. 34: 923-932.

تقدير قدرة التآلف وقوة الهجين لبعض سلالات اللزة الثشامية البيضاء
يوســف صـلى قتـه ، محمـد سـعد عبـل الـعاطى ، محمـود عبد الحمـيد الهيتـى و محمـ وجيد قمرة
قسم المحاصيل ـ كلية الزراعة ـ جامعة كفرالثبيخ
أجريت هذه الار اسة بالمزرعة البحثية بكلية الزراعـة ـ جامعـة كفر الثيخ بهدف دراسـة القدرة علىى الإئتناف

 التالية: عدد الأيام حتى ظهور .0 \% من النورة المذكرة وعدد الأيام حتى ظهور .0 \% م من الحراير وارتفاع النبـات (سم) وارتفاع الكوز (سم) ، وطول الكوز (سم) ، وقطر الكوز (سم) ، وعدد اللسطور بالكوز ، وعدد الحبوب فى اللسطر ، ووزن
المائة حبة (جم) بالإضصافة إلى محصول الحبوب (أردب/فدان). ويمكن تلخيص النتائج فيما يلى:
1- وجود اختلافـات عاليـة المعنويـة بين التر اكيب الور اثيـة وكـان تبـاين القدرة العامـة علـى الخلط معنوى وكذللك القدرة
الخاصة كانت معنوية لجميع الصفات ماعدا صفة وز ون المائة حبة
「

 الأعلى فى صفة وزن المائة حبة.
ケ- كانت نسبة القدرة العامة إلى القدرة الخاصة أكبر من الواحد مما يشبر إلى زيادة أهمية الفعل المضيف لجميع الصفات المدروسة عدا صفتى ارتفاع النبات وعدد صفوف الكوز حيث كان الفعل غير المضيف هو الأكثر أهمية.
 السلالات ، ، ، ، \& الأفضل فى القدرة العامة على الإيتتلاف لصفة محصول الفدان من الحبوب.
 الك

 هجين معنوية وسالبة كنسبة إلى هجين المقارنة القصبير لارتفاع النبات (سم) وارتفاع الكوز (سم) علىى الترتيب بينمـا الهجين (1
 أعطوا قوة هجين موجبة ومعنوية منسوبة إلى هجين المقارنة المتفوق فى هذ هذ الصفا V-

Table (1): Observed mean squares for genotypes as well as general and specific combining ability and their ratio in diallel analysis for all the studied traits.

S.O.V	d.F	Tasseling date (day) (day)	$\begin{aligned} & \text { Silking } \\ & \text { date } \\ & \text { (day) } \end{aligned}$	Plant height (cm)	Ear Height (cm)	Ear length (cm)	$\begin{gathered} \text { Ear } \\ \text { diameter } \\ (\mathrm{cm}) \end{gathered}$	No of rows /ear	No. of kernels/ row	100-grain weight	Grain yield ardab /fed.
Replication	3	27.90**	26.28**	1099.65**	366.94**	3.38*	0.192**	1.85*	17.64**	18.58**	9.14*
Genotypes	23	31.94**	36.51**	2438.86**	850.44**	7.40**	0.260	3.89**	42.50**	25.48**	81.79**
Crosses	20	31.25**	31.47**	1000.41**	826.99**	6.76**	0.294**	4.16**	44.34**	20.73*	43.19**
g.c.a	6	84.95**	77.9**	1868.92**	1849**	15.58**	0.732**	8.49**	107.37**	61.02**	106.67**
s.c.ca	14	8.24**	11.56**	628.2**	388.96**	2.97**	0.108*	2.30**	17.33**	3.46	15.98**
Checks	2	8.07**	$16.74 * *$	15972.7**	739.72*	1.93	0.043	0.84	9.02	19.87**	3.12
cr.v.ch.	1	93.6**	176.9**	4140.2**	1540.9	31.20**	0.015	4.80**	72.61**	131.79**	1011.36**
Error	69	1.31	0.822	195.19	173.28	0.616	0.052	0.413	4.18	2.65	1.92
g.c.a/s.c.a		2.13	1.36	0.628	1.04	1.09	1.51	0.76	1.30	4.3	1.4

Katta, Y.S. et al.

Table (2): Mean performance of 21 crosses resulted from seven inbred lines of maize and three cheeks for all the studied traits.

Crosses	Tasseling date (day)	Silking date (day)	Plant height (cm)	$\begin{aligned} & \text { Ear height } \\ & (\mathrm{cm}) \end{aligned}$	$\begin{aligned} & \text { Ear length } \\ & (\mathrm{cm}) \end{aligned}$	$\begin{array}{\|l} \hline \text { Ear diameter } \\ (\mathrm{cm}) \end{array}$	No of rows/ear	No. of kernels/ row	100-grain weight	Grain yield ardab/fed.
$\mathrm{P}_{1} \times \mathrm{P}_{2}$	68.4	70.5	298.2	173.7	21.7	4.9	15.6	47.0	36.20	40.75
$\mathrm{P}_{1} \times \mathrm{P}_{3}$	65.3	68.2	271.3	165.0	20.9	4.8	15.2	46.8	33.40	32.30
$\mathrm{P}_{1} \times \mathrm{P}_{4}$	68.3	70.2	305.6	178.3	19.4	5.0	14.4	43.6	37.00	38.10
$\mathrm{P}_{1} \times \mathrm{P}_{5}$	64.0	66.0	295.7	162.3	20.7	4.7	14.7	44.5	31.80	31.90
$\mathrm{P}_{1} \times \mathrm{P}_{6}$	67.0	67.8	272.9	154.5	18.4	5.0	13.8	41.5	36.60	33.40
$\mathrm{P}_{1} \times \mathrm{P}_{7}$	67.4	69.1	303.0	164.9	21.6	4.8	15.3	46.2	35.50	37.80
$\mathrm{P}_{2} \times \mathrm{P}_{3}$	61.2	63.3	286.8	175.8	20.4	4.4	13.3	44.6	32.20	31.40
$\mathrm{P}_{2} \times \mathrm{P}_{4}$	66.2	68.3	292.7	171.9	20.5	5.3	15.3	42.3	34.10	34.10
$\mathrm{P}_{2} \times \mathrm{P}_{5}$	61.0	62.3	282.9	167.1	20.9	4.7	14.5	45.0	30.00	31.40
$\mathrm{P}_{2} \times \mathrm{P}_{6}$	61.2	62.3	283.6	164.6	19.2	4.8	14.6	41.0	31.50	31.50
$\mathrm{P}_{2} \times \mathrm{P}_{7}$	62.0	63.0	257.0	158.0	19.2	4.9	14.8	39.7	30.70	30.90
$\mathrm{P}_{3} \times \mathrm{P}_{4}$	60.5	63.5	259.3	140.1	18.8	4.9	14.8	35.8	33.10	28.60
$\mathrm{P}_{3} \times \mathrm{P}_{5}$	61.5	64.4	267.0	150.0	19.9	4.5	14.1	40.5	30.30	29.30
$\mathrm{P}_{3} \times \mathrm{P}_{6}$	62.9	65.0	271.7	149.5	19.4	4.6	13.2	41.5	32.50	31.60
$\mathrm{P}_{3} \times \mathrm{P}_{7}$	60.3	62.4	254.6	134.8	19.4	4.9	13.6	39.3	31.40	28.70
$\mathrm{P}_{4} \times \mathrm{P}_{5}$	62.7	65.0	287.0	159.1	19.2	5.2	15.5	38.1	32.30	32.40
$\mathrm{P}_{4} \times \mathrm{P}_{6}$	63.2	65.9	259.0	145.1	18.2	5.4	16.0	35.9	32.70	31.80
$\mathrm{P}_{4} \times \mathrm{P}_{7}$	63.3	66.0	293.8	170.9	20.2	5.2	15.7	39.0	33.00	32.10
$\mathrm{P}_{5} \times \mathrm{P}_{6}$	59.0	61.0	264.9	132.5	16.3	4.7	12.3	39.3	30.20	27.40
$\mathrm{P}_{5} \times \mathrm{P}_{7}$	60.8	63.0	272.4	131.8	18.7	4.4	14.5	38.7	28.40	27.80
$\mathrm{P}_{6} \times \mathrm{P}_{7}$	64.0	67.2	268.5	150.1	18.0	4.7	14.3	42.9	31.60	33.00
Checks										
S.C. 10	66.0	68.3	297.1	171.7	20.4	4.8	14.2	44.0	36.0	37.60
T.W.C. 310	64.2	67.5	290.7	163.7	20.6	4.9	14.5	43.2	34.0	36.80
T.W.C. 324	64.3	66.7	283.2	154.2	20.3	4.9	14.2	41.0	33.1	37.00
L.S.D. 0.05	1.85	2.35	23.36	17.09	1.50	0.32	1.12	2.82	3.22	3.20
0.01	2.46	3.13	31.03	22.70	2.00	0.42	1.49	3.75	4.28	4.37

Table (3): Estimates of general combining ability effects of parental inbred lines for all studied traits.

Inbreeds	$\begin{array}{\|c\|} \hline \text { Tasseling } \\ \text { date } \\ \text { (day) } \\ \hline \end{array}$	Silking date (day)	Plant height (cm)	$\begin{gathered} \text { Ear } \\ \text { height } \end{gathered}$ (cm)	Ear length (cm)	$\begin{gathered} \text { Ear } \\ \text { diameter } \\ (\mathrm{cm}) \end{gathered}$	No of rows/ear	No. of kernels/ row	100-grain weight	Grain yield ardab/fed.
Line $101\left(\mathrm{P}_{1}\right)$	4.071**	3.822**	15.23**	11.17**	1.05**	0.017	-0.039	4.015**	2.98**	4.126*
Line $102\left(\mathrm{P}_{2}\right)$	-0.008	-0.597**	-6.01*	13.65**	0.897**	-0.023	0.316*	2.018**	-0.174	1.295**
Line 103 (P_{3})	-1.668**	-1.177**	-11.97*	-5.53*	-0.2374	-0.0203**	-1.004**	-0.182	-0.534	-2.223**
Line 104 (P_{4})	0.831**	1.243**	-5.33	-4.51	-0.225	0.377**	1.035**	-2.964**	1.326**	0.805**
Line 105 (P_{5})	-2.219**	$-2.197^{* *}$	-0.196	-8.01**	-0.345*	-0.183**	-0.184	-0.659	-2.514**	$-2.575^{* *}$
Line $106\left(\mathrm{P}_{6}\right)$	-0.548*	-0.697**	-10.11**	-9.31 **	-1.585**	0.037	-0.464**	$-1.484^{* *}$	-0.094	-0.875**
Line 107 (P_{7})	-0.459*	-0.397*	-4.32	-6.47*	-0.065	-0.023	$0.340 *$	-0.745	-0.099	-0.555
L.S.D. gi 0.05	0.473	0.375	5.78	5.45	0.324	0.094	0.266	0.846	0.673	0.570
0.01	0.497	0.497	7.69	7.21	0.432	0.125	0.353	1.120	0.896	0.760
L.S.D. $\mathrm{gi}_{-} \mathrm{g}_{\mathrm{j}} \quad 0.05$	0.722	0.573	8.83	8.32	0.496	0.144	0.406	1.29	1.029	0.870
0.01	0.961	0.762	11.75	11.00	0.660	0.191	0.504	1.71	1.369	1.160

Table (4): Estimates of specific combining ability effects for F_{1} crosses in all the studied traits.

Crosses	$\begin{array}{\|c\|} \hline \text { Tasseling } \\ \text { date } \\ \text { (day) } \\ \hline \end{array}$	Silking date (day)	Plant height (cm)			Ear diameter (cm)	No of rows /ear	No. of kernels/ row	100-grain weight	Grain yield ardab/fed.
$\mathrm{P}_{1} \times \mathrm{P}_{2}$	0.997*	1.827**	-1.50	-8.26	0.10	0.053	0.903**	-0.621	0.793	2.599**
$\mathrm{P}_{1} \times \mathrm{P}_{3}$	-0.443	0.107	-10.22**	2.22	0.001	0.133	-0.877**	1.379	1.647*	-1.775**
$\mathrm{P}_{1} \times \mathrm{P}_{4}$	0.057	-0.313	6.58*	5.48	-1300**	-0.247**	-1.017**	0.962	0.093	0.989
$P_{1} \times P_{5}$	-1.193*	-1.079**	2.21	2.00	0.42	0.013	0.503	-0.440	-1.267	-1.831**
$\mathrm{P}_{1} \times \mathrm{P}_{6}$	0.137	-0.773	-10.68**	-4.50	-0.64*	0.093	-0.117	-2.619**	1.113	-2.031**
$\mathrm{P}_{1} \times \mathrm{P}_{7}$	0.447	0.227	13.63**	3.06	1.04**	0.047	0.603*	1.342	0.913	2.049**
$\mathrm{P}_{2} \times \mathrm{P}_{3}$	-0.463	-0.373	14.30**	10.54*	-0.34	-0.227*	-0.432	1.176	0.313	0.199
$\mathrm{P}_{2} \times \mathrm{P}_{4}$	2.037**	2.207**	2.90	-3.40	0.26	0.093	-0.472	1.660*	0.353	-0.180
$\mathrm{P}_{2} \times \mathrm{P}_{5}$	-0.113	-0.353	-1.37	4.32	0.78*	0.053	-0.052	2.069**	0.093	0.501
$\mathrm{P}_{2} \times \mathrm{P}_{6}$	-1.583**	-1.853**	8.84**	3.12	0.32	-0.067	0.328	-1.122	-0.827	-1.130*
$\mathrm{P}_{2} \times \mathrm{P}_{7}$	-0.873	-1.453**	-23.15**	-6.32	-1.20**	0.093	-0.277	-3.161**	-0.737	-2.02**
$\mathrm{P}_{3} \times \mathrm{P}_{4}$	-2.003**	-2.013**	-12.52**	-16.02**	-0.82	-0.127	0.348	-2.641**	-0.287	-2.161**
$\mathrm{P}_{3} \times \mathrm{P}_{5}$	2.047**	2.327**	0.71	6.40	0.40	0.033	0.868**	0.134	0.753	1.919**
$\mathrm{P}_{3} \times \mathrm{P}_{6}$	1.77**	1.427**	15.32**	7.20	1.14**	-0.087	0.248	1.581	0.533	2.519**
$\mathrm{P}_{3} \times \mathrm{P}_{7}$	-0.913	-1.473**	-7.57*	-10.34*	-0.38	$0.273^{* *}$	-0.157	-1.361	0.333	-0.701
$\mathrm{P}_{4} \times \mathrm{P}_{5}$	0.747	0.507	3.413**	5.46	0.20	0.153	0.228	0.137	0.893	1.990**
$\mathrm{P}_{4} \times \mathrm{P}_{6}$	-0.423	-0.093	-14.68**	-7.24	0.44	0.133	1.008**	-1.239	-1.127	-0.310
$\mathrm{P}_{4} \times \mathrm{P}_{7}$	-0.413	-0.293	14.33**	15.72**	0.92**	0.007	-0.097	1.122	0.073	-0.330
$\mathrm{P}_{5} \times \mathrm{P}_{6}$	-1.573**	-1.553**	-3.25	-7.32	$-1.34 * *$	-0.007	-1.472*	-0.144	0.213	-1.330*
$\mathrm{P}_{5} \times \mathrm{P}_{7}$	0.087	0.147	-1.69	-10.86**	0.46	-0.247**	-0.077	-1.484	-0.687	-1.250*
$\mathrm{P}_{6} \times \mathrm{P}_{7}$	1.667**	2.847**	4.47	8.74*	0.08	-0.067	0.003	3.542**	0.093	2.250**
L.S.D. Sij 0.05	0.933	0.740	5.780	8.32	0.640	0.185	0.524	1.66	1.321	1.130
0.01	1.241	0.984	7.690	11.00	0.852	0.247	0.691	2.21	1.767	1.500
L.S.D.Sij-Sij 0.05	1.252	0.993	15.30	14.40	0.859	0.249	0.704	2.23	1.783	1.520
0.01	1.665	1.321	20.35	19.10	1.143	0.331	0.936	2.97	2.371	2.020

Table (5): Percentage of useful heterosis (superiority) relative to the superior check (between brackets) for the desired trait for all the studied traits.

Characters Crosses	Tasseling date TWC (310)	Silking date TWC (324)	Plant height (cm) TWC (324)	$\begin{gathered} \text { Ear height } \\ \text { (cm) } \\ \text { TWC } \\ \text { (324) } \\ \hline \end{gathered}$	Ear length (cm) TWC (310)	Eardiameter(cm)TWC (310)	No of rows TWC (310)	No. of kernels row SC (10)	100-grain weight (SC10)	Grain yield ardab/fed.		
										SC(10)	TWC(310)	TWC(324)
$\mathrm{P}_{1} \times \mathrm{P}_{2}$	6.50**	5.70**	5.30	12.60	5.30	0.00	7.60*	6.80*	0.60	8.37*	10.73*	10.13
$P_{1} \times P_{3}$	1.70	2.20	-4.20	7.00	1.50	-2.00	-13.8**	6.40*	-7.20	-14.1**	-12.2**	-12.7**
$\mathrm{P}_{1} \times \mathrm{P}_{4}$	6.40**	5.20**	7.90	15.66**	-5.80	2.00	-0.70	-0.90	2.80	1.3	3.5	3.0
$P_{1} \times P_{5}$	-0.30	1.00	4.40	5.30	0.50	-4.10	1.40	1.10	-11.70**	-15.2**	-13.3**	-13.8**
$P_{1} \times P_{6}$	4.40**	1.60	-3.60	0.20	-10.7**	2.00	-4.80	-5.70	1.70	-11.2*	-9.2*	-9.7*
$\mathrm{P}_{1} \times \mathrm{P}_{7}$	5.00**	3.60**	7.00	6.90	4.90	-2.00	5.50	5.00	-1.40	0.5	2.2	2.2
$\mathrm{P}_{2} \times \mathrm{P}_{3}$	$-4.70^{* *}$	-5.10**	1.30	14.0**	-1.00	-10.2**	-8.30*	1.40	-10.60*	-16.5**	-14.7**	-15.1
$\mathrm{P}_{2} \times \mathrm{P}_{4}$	3.10*	2.140	3.40	11.50*	-0.500	8.20**	5.50	-3.90	-5.030	-9.3*	-7.3	-7.8
$\mathrm{P}_{2} \times \mathrm{P}_{5}$	-5.00**	-6.60**	-0.10	8.410	1.50	-2.10	0.00	2.30	-16.7**	-16.5**	-14.7**	-15.1**
$\mathrm{P}_{2} \times \mathrm{P}_{6}$	-4.470**	-6.60**	0.10	6.740	-6.80	-2.00	0.70	-6.80*	-12.5**	-16.2**	-14.4**	-14.9**
$\mathrm{P}_{2} \times \mathrm{P}_{7}$	-3.40*	-5.50**	-9.30*	2.50	-6.80	0.00	2.10	-9.80**	-14.7**	-17.2**	-16.0**	-16.5**
$\mathrm{P}_{3} \times \mathrm{P}_{4}$	-5.80**	-4.80**	-8.40*	-9.10	-8.70*	0.00	2.10	-18.60**	-8.10	-23.9*	-22.3**	-22.7**
$\mathrm{P}_{3} \times \mathrm{P}_{5}$	-4.20**	-3.40*	-5.70	-2.70	-3.40	-8.20**	-2.80	-7.90*	-15.8**	-22.1**	-20.4**	-20.8**
$\mathrm{P}_{3} \times \mathrm{P}_{6}$	-2.30	-2.50	-4.10	-3.00	-5.80	-6.10*	-8.90*	-5.70	-9.70*	-16.0**	-14.1**	-14.6**
$\mathrm{P}_{3} \times \mathrm{P}_{7}$	-6.10**	-6.40**	-10.1**	-12.96*	-5.80	0.00	-6.20	-10.70**	-12.8**	-23.7*	-22.0**	-22.4**
$\mathrm{P}_{4} \times \mathrm{P}_{5}$	-2.30	-2.50	1.30	3.20	-6.80	6.10*	6.90	-13.40**	-10.30*	-13.8**	-12.0**	12.4**
$\mathrm{P}_{4} \times \mathrm{P}_{6}$	-1.70	-1.20	-8.50*	-5.90	-11.7**	11.20**	10.3**	-18.40**	-9.20**	-15.4**	-13.6**	-14.1**
$\mathrm{P}_{4} \times \mathrm{P}_{7}$	-1.60	-1.00	3.70	10.80	-1.90	6.10 *	8.30	-11.40*	-8.30	-14.6**	-12.8**	-13.2**
$\mathrm{P}_{5} \times \mathrm{P}_{6}$	-8.10**	-8.50**	-6.50	-14.1*	-20.9**	-4.10	-15.2**	-10.70**	-16.1**	-27.1**	-25.5**	-25.9**
$\mathrm{P}_{5} \times \mathrm{P}_{7}$	-5.50 **	-5.50 **	-3.80	-14.5*	-9.20 *	-10.20**	0.00	-12.00***	-21.1**	-26.1**	-24.5**	24.9**
$\mathrm{P}_{6} \times \mathrm{P}_{7}$	-0.30	0.70	-5.20	-2.70	-12.6**	-4.10	-1.40	-2.50	-12.20*	-12.2**	-10.3*	-10.8*

| $\mathrm{P}_{6} \times \mathrm{P}_{7}$ | -0.30 | 0.70 | -5.20 | -2.70 |
| :--- | :--- | :--- | :--- | :--- |${ }^{* *}$ Significant and highly significant at 0.05 and 0.01 , respectively

