Journal of Plant Production

Journal homepage: <u>www.jpp.mans.edu.eg</u> Available online at: <u>www.jpp.journals.ekb.eg</u>

Mitigation of Salt Stress on Basil Plant by Irrigation Technique with Magnetic Water and Spraying with Salicylic Acid under Sandy Soil Conditions at Kalabsho Region

Gehan F. Massoud ^{1*} and Mona A. M. El-Mansoury²

Cross Mark

¹Medicinal and Aromatic Plants Res. Depart., Horticulture Res. Inst., Agric. Res. Center, Giza, Egypt ²Water Requirements and Field Irrigation Res. Dept., Soils, Water and Environment Research Institute, Agriculture Research

Center, Giza, Egypt

ABSTRACT

<image>

A field experiment was conducted at a private farm in newly reclaimed sandy soil at Kalabsho, El-Dakahlia Governorate, Egypt during 2018 and 2019 seasons to evaluate the effect of irrigation water type (magnetized water and non-magnetized having 6350ppm total soluble salts), different irrigation intervals (2, 4 and 6 days) and spraying with salicylic acid (0, 50, 100 and 150 ppm) on alleviating salt stress reflecting growth, yield and metabolic characters of Ocimum basilicum L. The experimental design was split-split plot replicated three times. Results revealed that MW at all examined intervals gave the supreme significant increase on all studied growth parameters, herb fresh and dry yield/fed, essential oil percentage, oil yield/fed, photosynthetic pigments, carbohydrates, protein and productivity of irrigation water in the two cuts in both seasons. Appropriate irrigation interval (4 days) significantly increased herb fresh and dry yield/fed, essential oil percentage, oil yield/fed, those were higher in the 2nd cut than 1st one through both seasons while, a remarkable decrease in the 2nd cut was observed with non-MW. Spraying with SA at all levels in both water types significantly increased most of studied attributes particularly at 150ppm. It could be concluded that MW every 4 days interacted with 150ppm SA were effectively increased growth, yield, oil %, oil yield, major components linalool and 1, 8- cineol, certain metabolic characters. Consequently, MW irrigation every 4days with spraying 50ppm SA on basil under salt stress and limited water resources could be recommended for enhancing growth, qualitatively and quantitatively oil yield.

Keywords: Ocimum basilicum L., magnetic water (MW), irrigation interval, salicylic acid (SA), yield, some physiological traits.

INTRODUCTION

Basil (*Ocimum basilicum* L.) is a widespread herb of Labiatae grown in warm tropical climates, native to India and East Africa (Hiltunen and Holm, 2003). It is cultivated as an ornamental plant, either for culinary purposes or production of essential oil (Ba, czek *et al.*, 2019). Approximately 60 basil species are recognized throughout the world and cultivated in Egypt, France, Russia, Indonesia, Greece and Israel (Adamović, 2012). Additionally, basil has stimulating properties and diuretic effect (Ahmed *et al.*, 2014). Essential oils obtained from the leaves and flowering tops are consumed for food seasoning, dental and oral products, perfumes and in folk medicine. Basil is used in food industry as a flavoring agent and also in perfumery and medical industries (Nguyen *et al.*, 2010).

Irrigation water and soil salinity have considerable effect on basil (Attia *et al.*, 2011). Soil salinity resulting from natural processes or from crop irrigation with saline water, mainly occurs in arid and semi-arid regions of the world (Wu *et al.*, 2007). The deleterious effects of salinity on plant growth are associated with many factors; low osmotic potential of soil solution (water stress), nutritional imbalance, specific ion effect (salt stress), or a combination of these factors (Mahdavikia *et al.*, 2019).

The availability of good quality water for irrigation becomes scarce and data on both quantity and quality is required (Fanous et al., 2017). Mostly, farms in the newly reclaimed soils were irrigated with saline water using magnetic water (MW) as harmless technique which improve the water quality and solubility of salts enhance seedlings development and plants become more resistant to unfavorable conditions under newly reclaimed sandy soil thus increases productivity and improves chemical composition of plants (Teixeira da Silva and Dobránszki, 2014; Samadyar et al., 2014 and Hozayn et al., 2016). Moreover, MW and drip irrigation are more efficient approaches to save irrigation water when only saline water is the available source (Mostafazadeh et al., 2011). On periwinkle, the growth traits and the display life were enhanced under irrigation with MW at different irrigation period (Hashemabadi et al., 2015). Mahmoud et al., 2017 found that plants treated with 1.0 of cumulative pan evaporation (CPE) combined with silica nanoparticles at 60 ppm enhanced vegetative growth, fresh and oil yield, stomata resistance value, oil components while, decreased transpiration rate.

The effect of irrigation on herb and essential oil yield of basil has not been studied enough. Basil plants were sensitivity to water stress and irrigation could be determined by using the yield response and water use efficiency (WUE).

Naderianfar et al. (2017) indicated that the highest water use efficiency (WUE) was obtained in terms of fresh and dry herb yield as 2.06 and 0.37 kg/m³ in medium soil texture, irrigation with 75% ETc and nano fertilizer treatment, respectively. Also they found that with deficit irrigation under water restriction conditions, with the aim of maximum use of water volume unit, the optimal water consumption depth will be reduced by 20% compared to maximum irrigation mode.

Irrigation water resources are limited through Egypt as well as water budget which is 55.5 milliard cubic meter according to the international agreements with the countries of the Nile basin (1959). So, working or investigation on identified the optimum irrigation interval for basil plant considers one of the most suitable steps to make a good management for irrigation water which discussed through this paper

The use of salicylic acid (SA) and irrigation technique with magnetic water are applied to adjust plant's reaction to environmental stresses thus alleviate yield reduction and lack of water especially in arid regions where available water will be of poor quality and mostly saline in nature (Bideshkia and Arvin, 2010; Bagherifard et al., 2015). Several studies reported that SA as alleviator of the effects of saline stress (Mohammadzadeh et al., 2013; Angooti and Nourafcan 2015). Furthermore, SA as phytohormone regulates plant growth, yield, flowering, in addition to enhancing photosynthetic rate and chlorophyll (Bagherifard et al., 2015).

The main target of this work is studying the response of Ocimum basilicum L. to irrigation with magnetic water at different irrigation intervals and spraying with SA under North Nile Delta climatic conditions and some water relations. Obtained results could be used as a good base for basil growers in the region to optimize the use of irrigation water and mitigate salt stress. Growth, certain physiological parameters as well as yield and its components were evaluated.

MATERIALS AND METHODS

In order to investigate the impact of irrigation water type (non-magnetized or magnetized water) at different irrigation intervals including irrigation every 2 days (1_1) , 4 days (I_2) and irrigation every 6 days (I_3) and foliar spraying of salicylic acid at $0(S_1)$, 50 ppm (S_2) , 100 ppm (S_3) and 150 ppm (S₄) on alleviating salinity effects in relation to vegetative growth, yield and chemical composition of Ocimum basilicum L. under the environmental conditions of newly reclaimed sandy soil. This trial was conducted at a private farm in Kalabsho region (Latitudes 31° 10' and 31° 31' N; Longitudes 31° 15' and 31° 33 E), El-Dakahlia Governorate, Egypt during two successive seasons 2018 and 2019. The meteorological data of the experimental site during both growing seasons were recorded in Table (1). Maximum and minimum air temperature were recorded daily then calculated as mean/month.

Table 1. The meteorological data of the experimental site during both growing seasons of 2018 and 2019.

	1 st season									2 nd season									
Month	Т	emp. ⁶	^D C		Rh %)	WS km d ⁻¹	Ep mmd ⁻¹	Т	emp. (Ծ		Rh %	,	WS km d ⁻¹	Ep mmd ⁻¹			
	Max.	Min.	Mean	Max.	Min.	Mean	Mean	Mean	Max.	Min.	Mean	Max.	Min.	Mean	Mean	Mean			
April	30.0	18.9	24.5	71.6	41.8	56.7	105.5	5.9	27.5	18.9	23.2	74.0	42.0	58.0	90.2	5.9			
May	31.0	22.9	27.0	71.0	45.8	58.4	112.8	6.4	29.8	19.7	24.8	77.5	45.7	61.6	92.5	5.3			
June	33.6	26.4	30.0	75.7	46.6	61.2	87.1	8.0	31.5	27.0	29.3	76.9	45.7	61.3	84.3	7.3			
July	33.9	26.1	30.0	82.7	56.8	69.8	82.5	7.8	32.2	28.7	30.5	79.8	44.1	62.0	83.6	8.7			
Aug.	33.6	26.4	30.0	84.3	56.3	70.3	81.8	7.7	32.9	27.6	30.3	82.0	50.2	66.1	83.6	8.7			
Sept.	32.9	24.9	28.9	83.1	51.8	67.5	92.1	5.9	31.5	26.2	28.9	82.0	49.9	66.0	87.4	7.3			
Oct.	29.8	24.0	26.9	82.4	55.3	68.9	92.2	4.5	29.9	24.3	27.1	81.4	48.7	65.1	91.0	4.9			

Source: Mansoura weather station according to the Central Laboratory for Agricultural Climate (CLAC), Agricultural Research Center, Ministry of Agriculture and Land Reclamation, Egypt.

Temp.: Air Temperature Rh: Relative humidity WS: Wind speed Ep: Pan Evaporation Soil samples were taken before cultivation at depths; 0-30 and 30-60 cm and analyzed physicochemically as described by (klute, 1986 and Jackson, 1973), the data are illustrated in Table (2) as mean values for both growing seasons. The texture of the experimental field soil is sand. Seeds were obtained from the Medicinal and Aromatic Plants Dept., Hort. Res. Inst., Agric. Res. Center, Egypt. The seeds were sown in the greenhouse at the beginning of March in both seasons in a mixture of vermiculite and peatmoss (2:1).

Uniform seedlings 10 cm height (5-8 leaves) were transplanted in plots on April 7th in both seasons at 30 cm×50 cm spacing. Each plot was 4 m² and contained three rows. A guard two lines was left between each two experimental plots to avoid the overlapping infiltration. The experimental design was split- split plot arrangements with three replicates. The main plots for type of irrigation water, the sub-plots for different irrigation intervals and the sub-sub plots were concentrated for salicylic acid (SA).

Table 2. The	able 2. The physicochemical properties of soil used as means of both seasons														
Parameters	Soil	fraction	s (%)	Soil	pH(1:2.5)	Fo	Availa	ble cat	tions (r	neq l ⁻¹)	Available anions (meq l ⁻¹)				
Soil depth	Clay	Silt	Sand	texture	soil water suspension	(dSm ⁻¹)	\mathbf{K}^{+}	Na ⁺	Ca++	Mg ⁺⁺	CO3	HCO3 ⁻	Cŀ	SO 4	
0-30 cm	7.5	14.1	78.4	Sand	7.54	2.112	1.29	13.0	2.0	5.5	0.0	4.0	9.5	8.29	
30-60 cm	8.3	17.1	74.6	sand	7.88	2.406	1.23	16.0	1.6	4.9	0.0	4.0	7.2	12.53	
Mean	7.9	15.6	76.5	sand	-	2.259	1.26	14.5	1.8	5.3	0.0	4.0	8.4	10.41	

Note: So4-was calculated by the difference between soluble cations and anions.

Ten days after transferring seedling were subjected to the irrigation water (IW) treatments (2, 4 and 6 day's intervals). Two types of irrigation water were used, the first was normal ordinary saline irrigation water pumped from a well (control) and the second was magnetized. Four inch

water magnetized device of Nefertari Biomagnetic engineered in Germany was installed on the main irrigation line. Irrigation water (IW) was under measured through trickle irrigation system which consists of a pumped unit that contains a pump, control unit, groups of pipes which differ in

its diameter and distribution lines. The control unit of the system contains a venture injector (25.4 mm), fertilizer tank, disk filters, control valves and a water flow meter. Distribution lines consists of polyethylene (PE) pipes manifolds (display and discharge) laterals of 16 mm in diameter and 40 m in length had in- line emitters spaced 0.3 m apart, each delivering 4L h⁻¹at a pressure of 1 bar. Drip irrigation lines were spaced 0.5 m apart equally spaced between every other row of basil. Water was applied from a pressurized hydrant and filtered through gravel and re-filtered through disk filters. The amount of applied water was measured using flow meter. Productivity of irrigation water (PIW) was calculated according to Ali *et al.*, (2007).

$$PIW = \frac{Y}{IW}$$

Where:

PIW; Productivity of irrigation water (kg m⁻³), Y; Yield (sum yields of first cut and second cut, kg), and IW; Applied irrigation water (m³).

The analysis of irrigation water for the same source using the standard method (Page *et al.*, 1982) is presented in Table (3).

 Table 3. Some characteristics of the used irrigation water

		Non-Magnetized water	Magnetized
		(check treatment)	water
pH		8.28	8.36
EC (dsm ⁻¹)		9.92	9.89
TSS (ppm)		6349	6328
	Ca++	14.4	14.4
Soluble cations	Mg^{++}	35.7	36
(meq/l)	Na^+	48.0	47.8
	\mathbf{K}^+	0.9	0.9
	CO3	-	-
Soluble anions	HCO ₃	13.6	14.0
(meq/l)	Cl	60.0	60.0
	SO_4	25.3	24.9
Hardness (mg/l)		241.09	223.00
Refractive index	I. I.	1.33	1.33
Surface tension(dyne/cm)	74.12	72.65
Viscosity(centis	toke)	0.76	0.72
Density(g/ml)		1.00	1.00
Turbidity (NTU)	885	790

Salicylic acid treatments (0,50,100 and 150 ppm) were sprayed three times; the first on May 7th, the second after one month from the first and the third on August 18th for both growing seasons. Entirely agricultural practices and fertilization through drippers under drip irrigation system were conducted as recommended by Agricultural Research Center, Egypt.

Plants were harvested twice at mid flowering stage (July 13rd and September 15th in both seasons). Random samples of five plants were taken at harvesting at 12 cm above the soil surface to evaluate the following data; Plant height (cm), Number of main branches per plant, Plant fresh and dry weight (g) as well as fresh and dry herb yield (kg fed⁻¹). Total leaf area per plant was calculated using leaf area-leaf weight relationship from leaf discs by a cork borer (Wallacce and Munger, 1965). Direct microscopic count for the stomatal number was carried out on stripes obtained from basil leaves. Uniformity three leaves representing the treated plants were chosen. Two epidermal stripes were taken from the leaves and on each strip two areas of about 0.25 cm² were selected for

determination of three stomatal counts for each strip. The number of stomata per mm² (stomatal density) on the upper epidermis was determined using the square ocular micrometer as described by Gaber (1985). Herb oil percentage was measured by hydro distillation in Clevenger apparatus as described by British Pharmacopoeia (2000). Total oil yield was calculated by multiplying the oil yield per plant by number of plants per fed. GLC was carried out at the Medicinal and Aromatic, HRI using Varian VISIA series 6200, FID detector. The percentage of the main components was calculated by matching their retention time (RT) with those of authentic samples under the same conditions and the constituents of the essential oil were identified, according to Adams (1995). Photosynthetic pigments (chlorophyll a, b and carotenoids) were estimated spectrophotometrically according to Harborne (1984). Basil leaves was rapidly dried to constant weight then ground to a fine powder for estimation of carbohydrates and protein contents (A.O.A.C., 1980).

Data was subjected to analysis of variance (ANOVA) using (costat) statistical analysis system. Mean comparisons were performed using the least significant differences (L.S.D) method at significance level of 5 % according to Gomez and Gomez (1984).

RESULTS AND DISCUSSION

Growth Responses

Effect of irrigation water type

As apparent in Table (4), the plants irrigated with magnetic water (MW) recorded highly significant increments in all evaluated growth variables; plant height, number of branches/plant, leaf area, stomatal density, fresh and dry weights in both cuts in the two consecutive seasons comparing with non-magnetic water (control). The mean values of these parameters in the 2nd cut were higher than those in the1st cut in the two studied seasons because the environmental conditions were more suitable for basil growth. The enhancement effect of MW clearly appeared in the second season compared to the first season. Basil plants irrigated with MW understand additions over the plants irrigated with nonmagnetic in all growth criteria; the height of plant, number of branches/plant, leaf area, stomatal density, fresh and dry weights by about 30.2, 40.1; 89.8, 95.8; 64.9, 78.3; 12.5, 16.1; 55.5, 67.8 and 56.5, 63.7 %, respectively, for both cuts in the first season and 37.8, 47.7; 94.9, 97.6, 64.5, 72.6: 15.7. 18.4: 56.5. 63.7 and 56.9. 63.7% respectively, in the second one. This increase in basil growth may be due to MW as the increase in pigments and protein biosynthesis. Magnetic field may be discontinuity of H₂ bonds of the molecule of MW and molecules become small that affected water characteristics facilitating the water passage throughout cell membrane (Grewal and Maheshwari, 2011). Also, may affect the production of IAA affecting the cell division, consequently, the increase in plant height and number of branches El-Kholy, et al., 2020).

Though MW has optimistic effects on the growth traits, there is no clarity to mechanisms resulted in these effects. However, many theories were suggested; Balouchi and Sanavy (2009) mentioned that the magnetic field increase the permeability of cell membranes and affect ion transport and various metabolic pathway activities. Grewal and Maheshwari (2011) described that magnetic effect on water characteristics mainly due to hydrogen bonding, polarity,

surface tension, conductivity, pH and solubility of salts that influenced on plant growth. Generally, The promising effect of MW may be due to its directly effect on soil properties then indirect effect on solubility of salts and kinetic changes in salt crystallization supporting the absorption of water and availability of nutrients thus improve biological processes that resulted in development of seedlings and plants become more resistant to unfavorable conditions under newly reclaimed sandy soil (Hozayn *et al.*, 2016). On the other hand, the reduction in all growth traits of basil plants due to irrigation with non-magnetic water noticed in this study may be attributed to the osmotic action and/ or ion specific effects of salinity. It was found that lower osmotic potential in the soil cause a decrease of water uptake, closure of stomata and reduction of transpiration resulting in numerous physiological disturbances (Silva *et al.*, 2018). It is worthy mentioned that MW is friendly environmental performance and realized increases over the plants irrigated with nonmagnetic water. Similar enhancing effect of MW was reported on flax (Abdul Qadose and Hozayn, 2010) and on rosemary (Boix *et al.*, 2018; El-Kholy, *et al.*, 2020).

 Table 4. Effect of irrigation water type, irrigation intervals and salicylic acid foliar spraying and their interactions on growth responses of *Ocimum basilicum* L. in the two cuts during the two growing seasons (2018 and 2019).

Treatments Pinnt height No. of Dranches Lead area Stomatal density Pinnt height Pinnt dry vt. Imigation watertype (A) 2 nd cut 1 st cut 1 st cut 1 st cut 1 st							1 st sea	son (2018)				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Treatments	Plant	height	No. of I	oranches	Leaf	area	Stomata	l density	Plant fi	resh wt.	Plant d	lry wt.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		(CI	n) 2nd area	/pl 1st are4	ant ord	(dm²/)	plant)	(NO./	2nd are4	() ()	g) 2nd	(<u>}</u>	<u>()</u>
Impation water type (A) Nonmagnetic 65.27 b 63.78 b 6.85 b 6.70 b 26.73 b 26.58 b 156.71 b 153.87 b 192.31 b 185.58 b 42.82 b 42.30 b Magnetic 84.98 a 89.34 a 13.00 a 13.12 a 44.09 a 47.38 a 176.28 a 178.69 a 291.3 a 31.142 a 67.00 a 692.58 b 150.05 0.121 0.104 0.736 0.124 0.078 2.557 0.249 0.547 1.114 0.058 0.145 Irrigation intervals (B) I (every 2 days) 78.17 a 79.71 a 10.57 a 10.61 a 38.78 a 40.81 a 170.61 a 171.31 a 254.44 a 263.14 a 57.66 a 59.11 a 116.45 b 242.62 b 24.05 b 54.56 b 54.97 b 12 (every 4 days) 78.17 a 79.71 a 10.57 a 10.61 a 38.78 a 40.81 a 170.61 a 171.31 a 254.44 a 263.14 a 57.66 a 59.11 a 116.90 0.630 0.166 0.121 0.126 1.590 b 163.60 c 235.19 b 236.09 b 232.42 c 252.90 b 53.25 c $8.82.40$ 1.159 1.789 7.670 4.042 0.025 0.086 alicylic acid (C) 0 $75.52 c$ 10.03 b 9.89 c 35.47 c 38.24 165.99 b 166.59 b 166.75 b $242.7 c$ 248.53 a $54.7 c$ 55.78 a 100 ppm 75.54 a 77.54 a 10.3 b 9.89 c 35.47 c 38.24 165.29 l 106.89 b 230.13 b 52.12 d 52.92 b 53.90 b 75.50 10.3 b 9.89 c 35.47 c 38.24 165.29 l 166.59 b 166.75 b $246.7 c$ 248.53 a $54.7 c$ 55.78 a 57.60 a 57.60 a 57.60 a 57.60 a 57.50 a 56.55 a 56.55 a 55.53 a 57.60 a 57.2	.	1 st cut	^{2nd} cut	1 st cut	^{2^{nu} cut}	1 ^{sr} cut	^{2nd} cut	1 ^{sr} cut	^{2nd} cut	1 st Cut	^{2nd} cut	1 st cut	^{2nd} cut
Nonmagnetic 65.27 b 63.78 b 6.85 b 6.70 b 26.75 b 26.87 b 126.87 b 125.87 b 192.81 b 185.87 b 42.82 b 42.50 b 40.57 b 42.50 b 42.50 b 42.50 b 40.57 b 42.50 b 42.50 b 42.50 b 42.50 b 40.57 b 42.50 b 42.50 b 42.50 b 42.50 b 40.57 b 42.50 b 42.50 b 40.57 b 42.50 b 42.50 b 40.57 b 42.50 b 40.57 b 42.50 b 42.50 b 42.50 b 40.57 b 42.50 b 42.50 b 40.50 b 42.50 b 40.50 b 42.50 b 40.50 b 42.50 b	Irrigation water type	(A)	60 5 0 1	6051	< 5 0.1	0 < 70 1	0 < 50 1	156511	152 051	100.011	105 501	10.001	10 00 1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Nonmagnetic	65.27 b	63.78 b	6.85 b	6.70 b	26.73 b	26.58 b	156.71 b	153.87 b	192.31b	185.58 b	42.82 b	42.30 b
F. test the set of th	Magnetic	84.98 a	89.34 a	13.00 a	13.12 a	44.09a	47.38 a	176.28 a	178.69 a	299.13 a	311.42 a	67.00 a	69.25 a
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	F. test	**	**	**	**	**	**	**	**	**	**	**	**
$ \begin{array}{ c c c c c c c c c c c c c c c c c c $	L.S.D at 0.05	0.121	0.104	0.736	0.124	0.124	0.078	2.557	0.249	0.547	1.114	0.058	0.145
$ \begin{array}{l} \text{It}(\text{every 2 days)} & 72.65 b 73.71 b 9.86 b 9.69 b 34.47 b 36.43 b 165.92 b 164.65 b 242.62 b 244.05 b 54.56 b 54.97 b 12 (every 4 days) & 78.17 a 79.71 a 10.57 a 10.61 a 38.78 a 40.81 a 170.61 a 171.31 a 258.44 a 263.14 a 26$	Irrigation intervals (I	3)											
$ \begin{bmatrix} (\operatorname{verry} 4 \operatorname{days}) & 78.17 a \ 79.71 a \ 10.57 a \ 10.61 a \\ 32.98 c \ 32.98 c $	I ₁ (every 2 days)	72.65 b	73.71 b	9.86 b	9.69 b	34.47 b	36.43 b	165.92 b	164.65 b	242.62 b	244.05 b	54.56 b	54.97 b
Is (every 6 days) 71.02 c 72.28 b 9.56 c 9.46 c 32.98 c 33.70 c 163.50 c 162.99 b 236.09 b 238.32 c 52.50 b 53.25 c 55.85 b 23.55 c F. test ** ** ** ** ** ** ** ** ** ** ** ** **	I ₂ (every 4 days)	78.17 a	79.71 a	10.57 a	10.61 a	38.78 a	40.81 a	170.61 a	171.31 a	258.44 a	263.14 a	57. 66 a	59.11 a
F, test ** * * * * * * * * * * * * * * * * *	I ₃ (every 6 days)	71.02 c	72.28 b	9.56 c	9.46 c	32.98 c	33.70 c	163.50 c	162.89 b	236.09 b	238.32 c	52.50 b	53.25 c
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	F. test	**	*	**	**	**	**	**	**	**	**	*	**
salicylic acid (C) 0 0 69.36 c 71.04 d 9.29 c 9.33 d 31.66 d 32.98 d 163.93 c 163.08 c 235.13 d 239.13 b 52.12 d 52.92 b 50 ppm 74.50 b 75.52 c 10.03 b 9.89 c 35.47 c 36.83 c 166.55 b 166.75 b 246.27 c 248.53 a 54.79 c 55.83 a 100 ppm 75.59 a 76.74 b 10.22 b 10.08 b 36.65 b 38.24 b 167.21 b 166.98 b 249.18 b 250.77 a 55.97 b 56.75 a 150 ppm 76.34 a 77.63 a 10.46 a 10.38 a 37.86 a 39.88 a 168.25 a 168.32 a 252.29 a 255.56 a 56.53 a 57.60 a F. test ** * * ** ** ** ** ** ** ** ** ** ** *	L.S.D at 0.05	0.960	1.390	0.300	0.166	0.121	0.126	1.159	1.789	7.670	4.042	0.205	0.086
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	salicylic acid (C)												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	69.36 c	71.04 d	9.29 c	9.33 d	31.66 d	32.98 d	163.93 c	163.08 c	235.13 d	239.13 b	52.12 d	52.92 b
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	50 ppm	74.50 b	75.52 c	10.03 b	9.89 c	35. 47 c	36.83 c	166.59 b	166.75 b	246.27 c	248.53 a	54.79 c	55.83 a
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	100 ppm	75.59 a	76.74 b	10.22 b	10. 08 b	36.65 b	38.24 b	167.21 b	166.98 b	249.18 b	250.77 a	55.97 b	56.75 a
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	150 ppm	76.34 a	77.63 a	10.46 a	10.38 a	37.86 a	39.88 a	168.25 a	168.32 a	252.29 a	255.56 a	56.53 a	57.60 a
L.S.D at 0.05 0.801 0.522 0.211 0.161 0.108 0.076 0.867 0.677 0.810 6.987 0.164 0.941 Interactions A X B ** ** NS NS **	F. test	**	*	**	**	**	**	**	**	**	*	**	*
InteractionsA X B****NSNS** </td <td>L.S.D at 0.05</td> <td>0.801</td> <td>0.522</td> <td>0.211</td> <td>0.161</td> <td>0.108</td> <td>0.076</td> <td>0.867</td> <td>0.677</td> <td>0.810</td> <td>6.987</td> <td>0.164</td> <td>0.941</td>	L.S.D at 0.05	0.801	0.522	0.211	0.161	0.108	0.076	0.867	0.677	0.810	6.987	0.164	0.941
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Interactions												
A X C * * * * * NS * * * * * * * * * * * * *	AXB	**	**	NS	NS	**	**	*	**	*	**	*	**
B X C NS * NS * * ** <th< td=""><td>AXC</td><td>*</td><td>*</td><td>**</td><td>NS</td><td>**</td><td>**</td><td>**</td><td>*</td><td>**</td><td>**</td><td>**</td><td>**</td></th<>	AXC	*	*	**	NS	**	**	**	*	**	**	**	**
A X B X C **	BXC	NS	*	NS	*	*	**	*	**	*	**	*	*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	AXBXC	**	**	*	**	**	**	NS	*	**	**	**	**
$ \begin{array}{llllllllllllllllllllllllllllllllllll$						2 nd seas	on (2019))					
Nonmagnetic 62.92 b 61.13 b 6.71 b 6.69 b 27.08 b 26.64 b 157.79 b 155.87 b 195.05 b 192.70 b 43.00 b 42.58 b Magnetic **	Irrigation water type	(A)											
Magnetic F. test86.69 a **90.38 a **13.08 a **13.22 a ** 44.54 a ** 45.99 a ** 182.61 a ** 184.53 a ** 305.20 a ** 315.46 a ** 67.46 a ** 69.72 a **L.S.D at 0.050.0670.1040.930.2640.1080.0210.2480.2530.2580.6550.0572.204Irrigation intervals(B)I (every 2 days)75.08 b76.00 b9.61 b9.56 b34.77 b35.06 b172.07 b175.72 a248.57 b250.40 b54.92 b55.41 bI (every 4 days)79.21 a 73.66 c74.12 c9.43 b9.43 b33.40 c33.44 c166.80 c166.80 b239.16 c242.56 c52.63 c53.61 cF. test**************************LS.D at 0.050.0420.0900.2550.3490.0590.0980.4210.3600.9370.3040.7001.133salicylic acid (C)072.69 d72.87 d9.13 d9.11 c32.27 d32.69 d166.99 c167.80 c238.42 d241.09 c52.46 c53.29 c50 ppm76.41 c77.51 c10.00 c9.97 b35.79 c36.39 c170.11 b170.66 b249.59 c254.33 b54.92 b55.90 b100 ppm77.03 b78.69 b10.18 a36.22 b37.31 b170.56 b170.90 b254.95 b258.52 a <td< td=""><td>Nonmagnetic</td><td>62.92 b</td><td>61.13 b</td><td>6.71 b</td><td>6.69 b</td><td>27.08 b</td><td>26.64 b</td><td>157.79 b</td><td>155.87 b</td><td>195.05 b</td><td>192.70 b</td><td>43.00 b</td><td>42.58 b</td></td<>	Nonmagnetic	62.92 b	61.13 b	6.71 b	6.69 b	27.08 b	26.64 b	157.79 b	155.87 b	195.05 b	192.70 b	43.00 b	42.58 b
F. test**	Magnetic	86.69 a	90.38 a	13.08 a	13.22 a	44.54 a	45.99 a	182.61 a	184.53 a	305.20 a	315.46 a	67.46 a	69.72 a
L.S.D at 0.05 0.067 0.104 0.93 0.264 0.108 0.021 0.248 0.253 0.258 0.655 0.057 2.204 Irrigation intervals(B) I1 (every 2 days) 75.08 b 76.00 b 9.61 b 9.56 b 34.77 b 35.06 b 172.07 b 175.72 a 248.57 b 250.40 b 54.92 b 55.41 b I2 (every 4 days) 79.21 a 81.13 a 10.78 a 10.68 a 39.25 a 40.43 a 175.23 a 175.93 a 262.65 a 269.29 a 57.80 a 59.43 a I3 (every 6 days) 73.66 c 74.12 c 9.43 b 9.43 b 33.40 c 33.44 c 166.80 c 166.80 b 239.16 c 242.56 c 52.63 c 53.61 c F. test **	F. test	**	**	**	**	**	**	**	**	**	**	**	**
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	L.S.D at 0.05	0.067	0.104	0.93	0.264	0.108	0.021	0.248	0.253	0.258	0.655	0.057	2.204
I1 (every 2 days) 75.08 b 76.00 b 9.61 b 9.56 b 34.77 b 35.06 b 172.07 b 175.72 a 248.57 b 250.40 b 54.92 b 55.41 b I2 (every 4 days) 79.21 a 81.13 a 10.78 a 10.68 a 39.25 a 40.43 a 175.23 a 175.93 a 262.65 a 269.29 a 57.80 a 59.43 a I3 (every 6 days) 73.66 c 74.12 c 9.43 b 9.43 b 33.40 c 33.44 c 166.80 c 166.80 b 239.16 c 242.56 c 52.63 c 53.61 c F. test **	Irrigation intervals(B	8)											
I2 (every 4 days) 79.21 a 81.13 a 10.78 a 10.68 a 39.25 a 40.43 a 175.23 a 175.93 a 262.65 a 269.29 a 57.80 a 59.43 a I3 (every 6 days) 73.66 c 74.12 c 9.43 b 9.43 b 33.40 c 33.44 c 166.80 c 166.80 b 239.16 c 242.56 c 52.63 c 53.61 c F. test ** <t< td=""><td>I₁ (every 2 days)</td><td>75.08 b</td><td>76.00 b</td><td>9.61 b</td><td>9.56 b</td><td>34.77 b</td><td>35.06 b</td><td>172.07 b</td><td>175.72 a</td><td>248.57 b</td><td>250.40 b</td><td>54.92 b</td><td>55.41 b</td></t<>	I ₁ (every 2 days)	75.08 b	76.00 b	9.61 b	9.56 b	34.77 b	35.06 b	172.07 b	175.72 a	248.57 b	250.40 b	54.92 b	55.41 b
Is (every 6 days) F. test L.S.D at 0.05 0.042 0.090 0.255 0.349 0.059 0.059 0.098 0.421 0.360 0.937 0.304 0.700 1.133 salicylic acid (C) 0 72.69 d 72.87 d 9.13 d 9.11 c 32.27 d 32.69 d 166.99 c 167.80 c 167.80 c 167.80 c 238.42 d 241.09 c 254.6 c 52.46 c 53.29 c 50.90 b 100 pm 77.03 b 78.69 b 10.18 b 10.18 a 10.18 a 10.32 a 150 pm 77.81 a 79.26 a 10.44 a 10.32 a 10.44 a 10.32 a 10.44 a 10.32 a 10.44 a 10.32 a 10.44 a 10.32 a 10.44 a 10.32 a 10.15 10.063 10.74 10.74 10.746 10.7	I ₂ (every 4 days)	79.21 a	81.13 a	10.78 a	10.68 a	39.25 a	40.43 a	175.23 a	175.93 a	262.65 a	269.29 a	57.80 a	59.43 a
F. test **	I ₃ (every 6 days)	73.66 c	74.12 c	9.43 b	9.43 b	33.40 c	33.44 c	166.80 c	166.80 b	239.16 c	242.56 c	52.63 c	53.61 c
L.S.D at 0.05 0.042 0.090 0.255 0.349 0.059 0.098 0.421 0.360 0.937 0.304 0.700 1.133 salicylic acid (C) 0 72.69 d 72.87 d 9.13 d 9.11 c 32.27 d 32.69 d 166.99 c 167.80 c 238.42 d 241.09 c 52.46 c 53.29 c 50 ppm 76.41 c 77.51 c 10.00 c 9.97 b 35.79 c 36.39 c 170.11 b 170.66 b 249.59 c 254.33 b 54.92 b 55.90 b 100 ppm 77.03 b 78.69 b 10.18 b 10.18 a 36.22 b 37.31 b 170.56 b 170.90 b 254.95 b 258.52 a 56.30 a 57.50 a 150 ppm 77.81 a 79.26 a 10.44 a 10.32 a 38.14 a 38.66 a 172.24 a 172.95 a 257.55 a 262.40 a 56.67 a 57.92 a F. test ** * ** ** ** ** ** ** ** ** ** ** ** L.S.D at 0.05 0.051 0.055 0.166 0.150 0.063 0.074 0.677 0.521 0.746 4.368 0.587 1.143 Interactions A X B ** ** ** NS ** ** ** ** ** ** ** ** ** ** ** ** **	F. test	**	**	**	**	**	**	**	**	**	**	**	**
salicylic acid (C) 72.69 d 72.87 d 9.13 d 9.11 c 32.27 d 32.69 d 166.99 c 167.80 c 238.42 d 241.09 c 52.46 c 53.29 c 50 ppm 76.41 c 77.51 c 10.00 c 9.97 b 35.79 c 36.39 c 170.11 b 170.66 b 249.59 c 254.33 b 54.92 b 55.90 b 100 ppm 77.03 b 78.69 b 10.18 b 10.18 a 36.22 b 37.31 b 170.56 b 170.90 b 254.95 b 258.52 a 56.30 a 57.50 a 150 ppm 77.81 a 79.26 a 10.44 a 10.32 a 38.14 a 38.66 a 172.24 a 172.95 a 257.55 a 262.40 a 56.67 a 57.92 a F. test **	L.S.D at 0.05	0.042	0.090	0.255	0.349	0.059	0.098	0.421	0.360	0.937	0.304	0.700	1.133
0 72.69 d 72.87 d 9.13 d 9.11 c 32.27 d 32.69 d 166.99 c 167.80 c 238.42 d 241.09 c 52.46 c 53.29 c 50 ppm 76.41 c 77.51 c 10.00 c 9.97 b 35.79 c 36.39 c 170.11 b 170.66 b 249.59 c 254.33 b 54.92 b 55.90 b 100 ppm 77.03 b 78.69 b 10.18 b 10.18 a 36.22 b 37.31 b 170.56 b 170.90 b 254.95 b 258.52 a 56.30 a 57.50 a 150 ppm 77.81 a 79.26 a 10.44 a 10.32 a 38.14 a 38.66 a 172.24 a 172.95 a 257.55 a 262.40 a 56.67 a 57.92 a F. test **	salicylic acid (C)												
50 ppm 76.41 c 77.51 c 10.00 c 9.97 b 35.79 c 36.39 c 170.11 b 170.66 b 249.59 c 254.33 b 54.92 b 55.90 b 100 ppm 77.03 b 78.69 b 10.18 b 10.18 a 36.22 b 37.31 b 170.90 b 254.95 b 258.52 a 56.30 a 57.90 a 150 ppm 77.81 a 79.26 a 10.44 a 10.32 a 38.14 a 38.66 a 172.24 a 172.95 a 257.55 a 262.40 a 56.67 a 57.92 a F. test **	0	72.69 d	72.87 d	9.13 d	9.11 c	32.27 d	32.69 d	166.99 с	167.80 c	238.42 d	241.09 с	52.46 c	53.29 c
100 pm 77.03 b 78.69 b 10.18 b 10.18 b 36.22 b 37.31 b 170.50 b 170.90 b 254.95 b 258.52 a 56.30 a 57.50 a 150 pm 77.81 a 79.26 a 10.44 a 10.32 a 38.14 a 38.66 a 172.95 a 257.55 a 262.40 a 56.67 a 57.92 a F. test ** <td>50 ppm</td> <td>76.41 c</td> <td>77.51 c</td> <td>10.00 c</td> <td>9.97 h</td> <td>35.79 c</td> <td>36.39 c</td> <td>170.11 b</td> <td>170.66 b</td> <td>249.59 c</td> <td>254.33 h</td> <td>54.92 b</td> <td>55.90 h</td>	50 ppm	76.41 c	77.51 c	10.00 c	9.97 h	35.79 c	36.39 c	170.11 b	170.66 b	249.59 c	254.33 h	54.92 b	55.90 h
150 ppm 77.81 a 79.26 a 10.04 a 10.32 a 38.14 a 38.66 a 172.95 a 257.55 a 262.40 a 56.67 a 57.92 a F. test **	100 ppm	77.03 h	78.69 h	10.00 C	10.18 a	36 22 h	37 31 h	170.56 h	170.00 b	254.95 h	258 52 a	56 30 a	57.50 a
F. test ** * **	150 ppm	77.81 a	79.26 a	10.10 b	10.10 u	38.14 a	38.66 a	172.24 a	172.95 a	257 55 a	262.40 a	56 67 a	57.92 a
L.S.D at 0.05 0.051 0.055 0.166 0.150 0.063 0.074 0.677 0.521 0.746 4.368 0.587 1.143 Interactions A X B ** ** * ** ** * ** *	F test	**	*	**	**	*	**	**	**	207.00 u **	202.10 u **	**	57.92 u
Interactions ** ** * **	LSD at 0.05	0.051	0.055	0 166	0.150	0.063	0.074	0.677	0 521	0 746	4 368	0 587	1 143
A X B ** ** * ** ** ** ** ** ** ** ** A X C ** ** * NS ** ** * ** ** ** NS	Interactions	0.051	0.055	0.100	0.150	0.005	0.074	0.077	0.521	0.740	 500	0.507	1.145
AXC ** ** NS ** ** * ** ** NS	Δ X R	**	**	*	*	**	*	**	**	*	**	*	*
	AXC	**	**	*	NS	**	**	*	*	**	**	**	NS
BYC ** ** ** * * ** ** NC * NC NC	BXC	**	**	**	*	*	**	**	**	NS	*	NS	NG
$\Delta X B X C$ ** ** NS NS ** ** * * ** ** ** **	AXBXC	**	**	NS	NS	**	**	*	*	**	**	**	*
Means designed by the same letter at each cell are not significantly different at the 5% level NS+ not significant	Means designed by the	e samo lott	er at each		not significe	antly diffo	rent at the	5% Joval	NS · not ci	mificant			

Effect of irrigation intervals

Data in Table (4) showed that all growth studied criteria were significantly increased under different

irrigation intervals in both seasons. The best irrigation interval was I_2 (every 4 days). Appropriate irrigation interval (I_2) resulted in the superior growth at all followed by I_1 and

I₃ with no significant differences between in many studied parameters as plant height, stomatal density in the 2nd cut and plant fresh weight in 1st cut in 1st growing season, number of branches/plant in both cuts in 2nd growing season. The increasing effects of growth under the adequate water supply may due to its effects on some metabolic processes within the cell (Sepaskhah, 1977). The decline in mentioned traits under higher irrigation interval up to 6 days may be attributable to the stomatal closure, and decrease CO₂ availability for the chloroplast affecting the photosynthesis rate (Leithy et al., 2006). Additionally, the plant senescence and the reduction of turgor pressure were causing the inhibition of cell expansion, also, the decrease of adequate moisture in the root zone affecting uptake of nutrients (Said-Al Ahl and Hussein, 2010). Obtained results showed a range of remarkable effects of irrigation intervals on basil growth; these findings are in harmony with Bahreininejad et al., 2013 on thyme; Abdel-kader et al., 2014 on lemongrass; Gerami et al., 2016 on oregano and Caliskan et al., 2017 on sweet basil.

Effect of salicylic acid

The attained results in Table (4) indicated that extending of SA levels from 50 to 150 ppm statistically increased growth characteristics in terms of the plant height, number of branches/plant, leaf area, stomatal density, plant fresh and dry weights for two cutting in both seasons compared to control. The maximum promoting effect of SA was found at 150 ppm for all studied growth parameters except the 1st cut of plant height, 2nd cut of plant fresh weight and both cuts of plant dry weight in 1st growing season, 2nd cut of branches number/plant, 2nd cut of fresh and dry weight in the 2nd growing season showing the maximum values at 100 and 150 ppm SA treatments without a significant differences. SA regulate basil growth and acts as a mitigator of the effects of saline stress by increasing the resistance of the plant to System Acquired Resistance (SAR) and various physiological roles throughout the alteration of antioxidant enzyme activities as SA treatment activate some enzymes and others were inhibited such as catalase which is a fundamental enzyme in SA-induced stress tolerance (Conrath et al., 1995). The present results showed that SA gave an increase in all studied growth traits and increased plant tolerance for salt stress conditions. These results are in concord (Mohammadzadeh et al., 2013 on Ocimum basilicum; Abbas and Ibrahim, 2014 on Niggella sativa as well as Angooti and Nourafcan, 2015 on Ocimum basilicum.

Effect of the interactions

As obvious in Table (4), the interaction between water types and irrigation intervals showed a significant effect for all studied growth characters except for number of branches/ plant was non- significant for two cuts in both seasons. Also, the interactions of water types X SA exhibited a significant result for all mentioned traits except for number of branches/ plant in the 2nd cut in both seasons and plant dry weight in the 2nd cut in the 2nd growing season. Meanwhile, the interaction of irrigation intervals X SA indicated a notable effect on some experimental traits and not for others such as in the1st cut for both plant height and number of branches during the 1st developing season, plant fresh weight in the 1st cut and plant dry weight in both cuts during the 2nd one showing non- significant effect.

Results from variance analysis (Table 5) indicated that the interaction among all studied factors significantly influenced on all growth parameters except stomatal density of basil in the 1st cut during the 1st season and number of branches in both cuts during the 2nd season that showed non-significant result.

It is obvious that all growth characteristics increased due to SA application and the increase was a concentration dependent. The significant increase in the growth characters namely; the plant height, number of branches/plant, leaf area, stomatal density, plant fresh and dry weights were recorded in response to 150 ppm SA level under the appropriate irrigation interval (I_2) in plants treated with non MW. These increases were 16.8,17.4; 35.9, 34.4; 54.0, 53.5; 6.6, 6.2; 21.4, 21.6 and 21.2, 21.7%, respectively for the two cuts in the 1st season compared to unsprayed plants while 11.1,16.6; 34.1,19.8; 52.4, 51.7; 6.0, 6.; 21.2, 21.7 and 21.2, 21.9% in that order during the 2nd season. The plants treated with MW required lower SA levels compared to the corresponding controls at all irrigation intervals through both seasons for the two cuts. The significant increases responding to the interaction treatment (MW+150ppm SA+I₂) determined 7.1, 8.8; 5.5, 3.6; 14.9, 9.1; 1.1, 4.3; 5.2, 5.1and 2.1, 4.8% respectively, in the two cuts during the 1st season as compared with unsprayed controls while, 6.2, 8.9; 12.6, 9.9; 10.7, 21.4; 4.3, 4.2; 2.1, 4.8 and 2.1, 4.3% in that order for both cuts in the 2^{nd} season.

It is notably from data in Table (5) that the plants irrigated with non-MW logged minor growth characters compared to those treated with MW at all irrigation intervals. Thus MW minimized the damage effect of non-MW as well as, foliar spray with SA reduced the negative effect of non-MW treatments. Consequently, the damaging effects of salinity on the growth due to irrigation with non- MW may be mitigated by spraying of SA at high level (150 ppm) at all irrigation intervals. Regarding non-MW treatments, the interaction treatment (non-MW+ 150ppmSA+ I2) recorded the top values in the experimental traits compared to the other interactions. As compared with non-MW treatments (controls), the interaction treatment of MW with spraying of SA showed highly significant increases in all verified traits under all irrigation intervals in the two cuts during both growing season. The paramount water supply for both MW and non-magnetic water is every 4 days interval (I₂) that realized the uppermost growth with application of SA at 150 ppm under non-MW treatments and 50, 100 or 150 ppm with non-significant differences among them under MW treatments throughout the two seasons for all cuts. The supreme vegetative growth in consequence of the interaction treatment (MW+150 ppm SA+I₂) for two yields in the two growing seasons paralleled to all considered treatments. This enhancement of basil growth may be owing to the effective role of MW and SA on alleviating salt stress as well as the appropriate irrigation. Applicable water in the rhizosphere simplifies nutrients absorption necessary for plant growth. Hence, it is very likely that drought conditions and water deficiency adversely affect plant growth by affecting on plant metabolism including cell wall and cell expansion. Similar enhancing effect in relation to these interactions was reported by Hashemabadi et al., 2015 on Periwinkle; Aly et al., 2015 on valencia orange and Ahmed & Abd El-Kader, 2016 on potato plants.

Table 5. Mean comparisons for interaction effects of irrigation water type, irrigation intervals and salicylic acid foliar spraying on growth responses of *Ocimum basilicum* L. in the two cuts during the two growing seasons (2018 and 2019).

								1 st :	season					
Tre	atments		Plant	height	No. of	lont	Leaf	area	Ston donsity(N	atal	Plant f	resh wt.	Plant	dry wt.
			(C)	branches/pi	lanı	(uni /	plant)	uensity(F	(0./11111)	Q	3)	(g)
Water type	Irrigation interval	Salicylic acid	1 st cut	2 nd cut	1 st cut 2 nd	cut	1 st cut	2 nd cut	1 st cut	2 nd cut	1 st cut	2 nd cut	1 st cut	2 nd cut
		0	58.77 s	58.60 p	6.03 h 5.8	33 i	21.70 r	21.43 u	152.58 h	149.891	178.08 p	173.03s	39.27tu	38.30w
N	ery iys)	50 ppm	61.70 p	59.83m	6.70 g 6.0	7 jk	25.37 n	25.23 p	158.34 f	154.67 j	187.20m	180.1p	42.62p	42.51q
N-	I da	100 ppm	63.57 0	61.631	7.07 fg 6.0	7 jk	27.93 m	27.93 o	158.39 f	155.09 ij	191.171	183.530	44.05o	42.94p
nor	-0(1	150 ppm	64.67 n	61.87 kl	7.53 ef 6.60	0 hi	29.871	29.80 n	158.45 f	155.17 ij	199.40k	190.70n	44.41o	43.870
er(20	0	59.83 r	58.900	6.07 h 5.9	3 k	22.60 p	22.60 s	152.59 h	150.031	180.25no	174.17rs	39.67st	39.45u
vat	l2 /er	50 ppm	66.80m	62.07 k	7.43 f 6.9	0 h	31.13 k	31.07 m	158.88 f	156.66 hi	207.13 j	200.28m	46.29n	44.91n
ic	6	100 ppm	68.431	65.17j	8.03 de 7.6	0 g	32.13 j	32.071	160.14 f	157.65 h	211.401	205.081	47.23m	46.61m
net		150 ppm	<u>69.90 k</u>	<u>69.171</u>	8.23 d 7.9	7 g	34.801	<u>34.77 k</u>	162.65 e	159.31 g	218.85 h	212.75k	48.081	48.031
lag	v s	0 50 mm	50.87 r	50.02 p	6.03 h 5.8	3 K	22.1/q	21.03 t	152.50 h	150.001	1/8.450p	1/4.09rs	39.26u	38./8V
μu	I ₃ Vei	100 ppm	59.87 S	50 12 0	6.05 II 5.9	ЭК 2 :1-	22.85 p	22.65 f	154.04 ft	151.79 K	101.90 II 186.65 m	172.151 172.06a	59.708 41.20m	39.00L
ñ	e e	100 ppm	61.7 n	59.15 0 59.50 n	683 g 63	э јк. З ;;	24.070 25.30 n	24.50g	158 33 f	151.70 K	187.20m	170.00q 180.06p	41.301 41.87a	40.998 41.56r
		130 ppm 0	77.43 i	80.30 h	$\frac{0.05 \text{ g}}{12.17 \text{ c}}$ 12 1	<u>20 f</u>	29.30 h	<u>41 10 i</u>	173.96 hc	174.78 e	288 57 f	298 73i	63.85i	65 29i
	ys)	50 ppm	84 13 f	88 77 d	13 13 h 13 3	3 de	43 60 de	48.07 f	175.16 h	175 18 e	200.57 I 298 28 d	206.751 306.97f	66 54g	68 35f
S	I1 eve day	100 ppm	85.13 e	89.30 c	13.13 b 13.5	7 cd	43.63 de	48.27 e	175.17 b	175.34 e	299.09 d	307.14f	67.73f	68.89e
Ą	50	150 ppm	85.83 d	89.37 c	13.17 b 13.8	7 bc	43.73 d	49.63 d	175.34 b	177.08 d	299.15 d	312.16e	68.31e	69.59d
Die U		0	85.83 d	89.70 b	13.17 b 13.8	7 bc	43.43 e	49.90 c	180.11 a	181.62 c	302.37 c	318.48d	69.20d	71.20c
/ate	ery ys	50 ppm	91.03 c	97.50 a	13.87 a 14.0	17 ab	47.77 c	50.00c	182.00 a	188.02 ab	313.05p	328.70c	69.82c	73.97b
r C	da da	100 ppm	91.63 b	97.57 a	13.87 a 14.1	7 ab	48.43 b	51.63 b	182.03 a	187.73 b	316.50 a	330.80b	70.27b	74.14b
leti	~4	150 ppm	91.90 a	97.63 a	13.90 a 14.3	37 a	49.90 a	54.43 a	182.08 a	189.51 a	318.00 a	334.85a	70.68a	74.59a
gg	~ ~	0	75.40 j	80.13 h	12.27 c 12.3	30 f	40.13 h	41.20 j	171.78 d	172.17 c	283.04 g	296.28j	63.04k	64.50k
Σ	l3 ery	50 ppm	83.47 h	85.93 g	13.03 b 13.0)3 e	42.10 g	43.80 i	172.50 cd	174.17 e	290.08ef	300.03h	63.71j	65.58i
	Ç é	100 ppm	83.90 g	87.67 f	13.02 b 13.0)7 e	42.90 f	45.03 h	172.58 cd	174.31 e	290.27 ef	300.04h	65.22i	66.92h
		150 ppm	84.03 fg	88.23 e	13.10b 13.1	17 e	43.57de	45.53 g	172.63 cd	174.43 e	291.14 e	302,84g	65.86h	67.97g
L.S.	.D at 5%	level	0.045	0.299	0.517 0.3	395	0.265	0.187	0.124	1.658	1.986	1.292	0.401	0.199
							2 nd se	eason						
	> @	0	62.70 r	59.23p	5.27j 5.0)7j	22.10v	21.37u	153.811	151.891	178.90tu	174.49w	39.371	38.78m
S	li ays	50 ppm	64.03 o	62.90m	6.27gh 6.1	7hi	25.90p	25.570	158.58j	156.67j	194.15p	193.64q	42.72k	42.70ijk
Ą	5 (e	100 ppm	65.47n	65.301	6.57fg 6.2	Ohi	28.070	27.97n	159.01ij	157.09ij	200.670	195.60p	44.16j	43.98ij
[-u		150 ppm	6/.9/m	67.80k	6.70f 6.2	Ohi	29.90n	29.83m	159.081j	157.17ŋ	202.340	199.830	<u>44.52j</u>	44.391j
(nc	v s	50	62.93S	59.800	5.8/ni 5.9	701 121-	22.90t	22.578	153.941	152.031	180./0st	1/9./3u	39.701	39.48lm
tic	I ₂ Vei	50 ppm	60.121	08.03J	0./31 0.4	$\log 10^{-10}$	32.00m	31.3/I 22.02k	161.57h	150.65h	210.88n	204.59n	40.401	45.00m
net	94 97	100 ppm	60.031	09.271 60.73h	7.870 7.0	10g 17g	32.301 34.00k	34.03K	101.3/11 163.23α	159.05II	213.1311	212.55111	47.54III 48.20h	47.23gn
nag		0	62.70s	59.73n	$\frac{7.870}{5.77i}$ 5.2	77 <u>8</u> 73i	22 30u	21.63t	153 921	152 001	178 831	176.60	39 351	38.9/1lm
ШC	ys ys	50 ppm	63.10a	59.930	5 97hi 5 9		22.50u 23.60s	22.83r	155.921 155.71k	152.001 153 79k	181 11s	180.67t	39 851	39 72lm
ž	I3 eve	100 ppm	63.10q	62.07n	5.97hi 6.0	7hi	25.10r	24.87a	155.70k	153.78k	188.11r	186.758	41.40k	40.99kl
	<u> </u>	150 ppm	63.83p	62.07n	6.23gh 6.1	3hi	25.63a	25.17p	158.36i	156.44i	190.73 g	189.33r	41.97k	41.59ik
-	~	0	80.77i	84.70g	12.07d 12.	13f	39.93j	42.63i	178.69e	180.61e	289.66j	297.44j	63.74g	65.31f
_	ery (ys)	50 ppm	86.30e	89.03c	13.17bc13.3	33de	43.60f	44.03f	179.10e	181.02e	303.12g	311.37f	66.70ef	68.37de
ĺ	eve da	100 ppm	86.53 d	89.50b	13.33c 13.5	50d	43.73f	44.07f	179.26e	181.18e	308.33f	313.83e	67.89de	69.72cd
Æ	-0(1	150 ppm	86.87c	89.53b	13.53b 13.9	90c	44.90e	45.03e	181.00d	182.92d	311.17e	317.00d	68.47cd	70.04cd
er	~ s	0	86.90c	89.57b	13.53b 13.9	90c	45.10d	45.27d	185.53c	187.45c	315.26d	324.35c	69.37bc	71.92bc
wal	lay.	50 ppm	92.00b	97.53a	14.83a 14.8	83b	47.80c	51.30c	191.93ab	193.85ab	318.04c	336.95b	69.99ab	74.00ab
5	64	100 ppm	92.07b	97.57a	15.17a 15.1	7ab	48.90b	51.50b	191.64b	193.56b	320.12b	337.76b	70.45ab	74.66ab
leti		150 ppm	92.33a	97.57a	<u>15.23a 15.2</u>	$\frac{2}{a}$	49.93a	54.97a	193.43a	195.34a	322.00a	339.79a	70.86a	/5.00a
agi	$\mathbf{v}_{\mathbf{s}}$	0	80.131	84.6/g	12.30d 12.	40t 10-	41.301	42.701	1/6.081	1/8.00f	28/.18k	393.83k	63.19g	65.31f
Σ	I ₃ ver day	50 ppm	84.9/n 85.57-	87.03I	13.030 13.	10e	42.50n	43.03h	178.080	180.000	290.21J	298./31	03.80g	69 27 J-
	é (e	100 ppm	85.00f	00.43C 88 874	13.0/C 13.2	27de	43.20g 43.60f	43.40g 13.00f	178.230	180.260	297.101 300.02h	300.61~	00.38I	68 37da
18	D at 5%	level	0 124	0.136	0.406 0.3	169	0.155	0 181	1 659	1 659	1 828	0.907	1 438	2.80
_	/0	10,001	0.147	0.150	0.400 0.5		0.100	0.101	1.007	1.00/	1.020	0.704	11.0	2.00

Means designed by the same letter at each cell are not significantly different at the 5% level

Yield characters and essential oil production

Effect of irrigation water type

Results presented in Table (6) indicated that MW caused a highly significant increment in yield characters; the fresh and dry yield per feddan in addition to the essential oil percentage besides oil yield per feddan likened with non MW during all cuts for both growing seasons. It is worthy that MW increases over the plants irrigated with non-MW

in the fresh yield per fed. by about 55.5, 68.0 % in the 1st growing season and 56.4, 63.7% in 2^{nd} season for the two cuts, respectively. Meanwhile the percentage increase in the dry yield per fed. were 57.1, 64.5% for the two yields in the1st growing season, 57.1 and 62.3% in that order in the 2^{nd} growing seasons. Concerning on the increases in the oil %, it reached 67.3, 79.7% in the 1st season and 62.7, 81.3% in the 2^{nd} one. The oil yield upsurges were 102, 136% in the

1st growing season while 118, 149 % in the 2nd one. The obvious increase in yield characters due to MW is a reflection of enhancement the vegetative growth. These results are harmony with those obtained by Hachicha *et al.*, 2016 on corn and El-Kholy *et al.*, 2020 on rosemary, they concluded that the irrigation with MW increased yield and the oil percentage.

Effect of irrigation intervals

As shown in Table (6), Irrigation every 4 days (I_2) produced the extreme value of fresh and dry yield per feddan, followed by irrigation every 2 days (I_1) , then the irrigation every 6 days (I_3) . Concerning the effect of

irrigation intervals on the oil% and oil yield per fedden, I_2 gave the uppermost values followed by I_1 or I_3 with nonsignificant differences in between during the two growing seasons for all cuts. Generally irrigation interval is one of the major yield constraints of basil plants, the best yield characters were obtained under the appropriate irrigation interval I_2 (every 4 days). Significant reduction in yield of basil under I_3 in relation to I_2 interval well demonstrated the susceptibility of basil to soil water deficiency. The increment of the essential oil yield, as a result of the formation and accumulation of essential oil, depended directly upon oil % and / or herb weight.

 Table 6. Effect of irrigation water type, irrigation intervals and salicylic acid foliar spraying and their interactions on yield of fresh herb (ton /fed), dry herb (ton /fed), Essential oil percentage (%) and oil yield (L/fed) of Ocimum basilicum L. in the two cuts during the two growing seasons (2018 and 2019).

				1 st season	(2018)			
Treatments	Yield of fresh	herb (ton /fed)	Yield of dry	herb (ton/fed)	Essential oil per	centage (%)	Oil yiel	d(L/fed)
	1 st cut	2 nd cut	1 st cut	2 nd cut	1 st cut	2 nd cut	1 st cut	2 nd cut
Irrigation water ty	pe (A)							
Nonmagnetic	3.46b	3.34b	0.77b	0.76b	0.150b	0.148b	5.922b	5.910b
Magnetic	5.38a	5.61a	1.21a	1.25a	0.251a	0.266a	13.017a	14.00a
F. test	**	**	**	**	*	**	*	**
L.S.D at 0.05	0.010	0.020	0.001	0.003	0.067	0.011	3.134	0.943
Irrigation intervals	s (B)							
I ₁ (every 2 days)	4.37b	4.39b	0.98b	0.99b	0.191b	0.194b	8.814b	9.127b
I ₂ (every 4 days)	4.65a	4.74a	1.04a	1.06a	0.225a	0.240a	11.076a	12.281a
I ₃ (every 6 days)	4.25c	4.29c	0.95c	0.96c	0.185b	0.186b	8.314b	8.531b
E test	**	**	**	**	**	**	**	**
LSD at 0.05	0.012	0.013	0.004	0.001	0.018	0.017	0 970	0.750
Salicylic acid (C)	0.012	0.015	0.004	0.001	0.010	0.017	0.970	0.750
$\int dela \left(\mathbf{C} \right)$	4 23d	4 3 0d	0 94d	0.95d	0.179b	0.182b	8 080b	8 444b
50 ppm	4.43c	4.30d	0.940	1.00c	0.2039	0.1020	0.0000	10.739
100 ppm	4.43C	4.47C	1.01b	1.00C	0.205a	0.212a	9.555a 9.807a	10.25a
100 ppm	4.490	4.510	1.010	1.020	0.207a	0.215a	9.007a	10.431a 10.702a
E tost	4.J4a **	4.00a **	1.02a **	1.04a **	0.213a **	0.218a **	10.104a **	10.795a **
r. lesi	0.015	0.000	0.003	0.001	0.016	0.028	0.785	0.828
L.S.D at 0.05	0.015	0.009	0.003	0.001	0.010	0.028	0.785	0.828
Interactions	*	**	NC	*	NC	*	*	**
AXB	*	ste ste	INS	eye she she	INS NG		NG	NG
AXC	*	**	**	**	NS NG	NS NG	NS NG	INS NG
BXC	**	**	**	**	NS	NS	NS	NS
AXBXC	**	**	**	**	*	^	*	*
.	(1)		2 nd sea	ason (2019)				
Irrigation water ty	pe (A)	o (=)			0.4.501			F 0 401
Nonmagnetic	3.51b	3.47b	0.77b	0.77b	0.158b	0.1506	5.965b	5.960b
Magnetic	5.49a	5.68a	1.21a	1.25a	0.257a	0.272a	13.020a	14.883a
F. test	**	**	**	**	**	**	**	**
L.S.D at 0.05	0.005	0.012	0.001	0.039	0.007	0.003	0.518	0.881
Irrigation intervals	s (B)							
I ₁ (every 2 days)	4.47b	4.51b	0.98b	1.00b	0.199b	0.201b	9.319b	9.672b
I ₂ (every 4 days)	4.73a	4.85a	1.04a	1.07a	0.230a	0.240a	11.531a	12.563a
I ₃ (every 6 days)	4.30c	4.37c	0.95c	0.96c	0.193b	0.191b	8.738c	8.931c
F. test	**	**	**	**	**	**	**	**
L.S.D at 0.05	0.017	0.005	0.004	0.020	0.008	0,011	0.401	0.479
Salicylic acid (C)								
0	4.29d	4.34d	0.94d	0.96c	0.183c	0.182b	8.421c	8.575c
50 ppm	4.49c	4.58c	0.99c	1.01b	0.210b	0.215a	9.954b	10.620b
100 ppm	4.59b	4.65b	1.01b	1.03a	0.213ab	0.218a	10.301ab	10.886ab
150 ppm	4.64a	4.72a	1.02a	1.04a	0.222a	0.228a	10.774a	11.473a
F. test	**	**	**	**	**	**	**	**
L.S.D at 0.05	0.013	0.007	0.003	0.021	0.01	0.014	0.516	0.714
Interactions								
AXB	*	**	*	**	**	*	**	**
AXC	**	**	**	NS	NS	NS	NS	NS
BXC	**	**	**	NS	NS	NS	NS	*
AXBXC	**	**	**	NS	*	*	*	*

The mentioned results are in agreement with those of Ekren *et al.*, 2012 reported that purple basil was very

sensitive to water stress, thus the yield of dry matter was significantly decreased, Amirjani (2013) who use four

different water regimes mentioned that increasing of drought level led to reduction in the growth and yield of *Catharanthus roseus*, Abedi *et al.*, 2014 on basil indicated that total yield was enhanced at 1 week interval compared to 2 weeks irrigation interval. Similarly, Mohamed *et al.*, 2014 concluded that the highly irrigation interval inhibited Curcuma growth and yield, its proper irrigation interval was every 7 days which enhanced the growth, the volatile oil thus increase the yield. Kalamartzis *et al.*, 2020 found that water stress affected the fresh, dry matter and the essential oil depending on the proper cultivar.

Effect of salicylic acid

Table (6) exhibited that SA application significantly enriched basil biomass per fedden, oil % and oil yield in relation to unsprayed treatments during the two studied seasons. Application of 150ppm SA resulted in the highest fresh and dry yields compared with other levels of SA application. On the other hand, all levels of SA treatments significantly increased the oil % and oil yield with nonsignificant differences in between. Foliar spray of basil with SA gradually increased oil percentage compared with their corresponding controls especially with the 2nd cut contained increases approximately 19.8 and 20.9% in the two growing seasons, respectively. The highest mean values of fresh and dry yield per fed., essential oil percentage and oil yield per fed. of the two cuts when combined together increased significantly with about 7.1, 9.0 % in the 1st growing season and 8.5, 8.4% in the 2nd one, 19.4 and 20% in the two growing seasons, respectively as well as 26.9 and 30.9% in the two studied seasons, in that a aforementioned order proportionate to control by application of SA at 150 ppm. The oil yield additions might be owing to the vegetative growth stimulation or the variations in oil glands of the leaf and biosynthesis of monoterpins. In conformity, Gharib (2006) found that using of SA encouraged oil yield by enhancing photosynthesis, nutrient uptake and enhanced the total free amino acid. Ghilavizadeh et al., 2019 showed that SA at 9 mM level stimulate the biological yield of fennel and gave the maximum yield under water stress at budding stage and 50% flowering.

Effect of the interactions

The results in Table (6) emphasized the significant effect of interaction between water types X irrigation intervals on the fresh and dry yield, oil% and consequently oil yield except for some slight apparent exceptions. Both treatments of the interactions between water types X SA and the interaction between irrigation intervals X anti salinity SA revealed the same significant increases on the fresh and dry yield per fed for the two growing seasons in all cuttings except the dry yield in the 2^{nd} cut in the 2^{nd} season whereas, they recorded a non-significant influence on the oil% and oil yield for the two studied seasons.

As regard the response of yield characters to the interaction among all studied factors, it is apparent from Table (7) that the plants irrigated with MW and sprayed with SA under all irrigation intervals caused a significantly increments on the fresh and dry yield per fed., oil % and oil yield comparable with the corresponding controls irrigated with non MW. Spraying of SA improve all mentioned characters of plants irrigated with non MW causing significant increases especially in the 2nd cut for both seasons equated with unsprayed controls. The maximum

yield was obtained from the interaction treatment of non-MW+150ppm SA+I₂ that gave increases as compared with unsprayed control approximately 21.4 and 21.8% fresh and dry yield, respectively in the 1st season, 21.4 and 21.6% in the 2nd one, meanwhile 28.6, 40.7% oil percentages in the two seasons and 56.7, 70.9% oil yield during the two succeeding seasons. Results in this study showed that oil yield was higher in the 2nd season than the 1st one because of more vigorous root systems (Bowes and Zheljazkov, 2004) were established in addition to the beneficial effects of MW on soil and the plants (Hachicha *et al.*, 2016).

The interactions of MW and all levels of SA under all irrigation intervals gave an increase in yield characters and this increase was significantly paralleled to owing controls of non MW. Generally, The interaction of (MW+150ppm SA+I₂) caused the uppermost yield with significant increments, the increases in fresh yield, dry yield, oil% and oil yield were 51.2, 50.9, 77.8 and 169.5%, correspondingly in the 1st season and 51.3, 51.1, 71.1 and 158.9% in that order in the 2nd one as compared with the corresponding control of non MW. These effects in relation to these interactions were harmony with Aly *et al.*, 2015 on valencia orange, Abbaszadeh *et al.*, 2020 on rosemary who stated that 1mM SA upturn the oil yield and tolerance. **Essential oil constituents**

The results of GLC analysis of the oil extracted from basil plants in the 2nd cut in the 2nd season presented in Table (8) showed a total of 7 components; Limonene, 1,8-Cineol, Linalool, 4- Terpinole, Borneol, Geranyl acetate and Eugenol. With respect to the influence of different levels of SA on plants irrigated by two types of water (MW and non-MW) under irrigation intervals, the focal components in basil oil were higher proportions of Linalool and intermediates of 1,8-Cineol. Plants irrigated with MW at 100ppm SA under I₂ recorded the supreme value of linalool percentage (56.89%), while the lowest linalool percentage (42.92%) was obtained from plants irrigated with non MW at 100ppm SA under I₃. The extreme percentage of 1,8-Cineol (21.75%) was acquired from plants irrigated with MW at 150ppm SA under I₂, while the treatment of (non – MW at100 ppm SA under I₃) recorded the minimum percentage (7.82%). Additionally, the components of basil oil comprises Limonene varied from 0.20 to 2.13% with the treatment (MW at 50ppm SA under I₁), 4- Terpinole ranged from 0.22- 6.37% with the treatment (MW at 50ppm SA under I₃), Geranyl acetate extended from 1.13 to 7.06% resulting from the treatment of (MW at 100ppm SA under I_2), Borneol varied from 0.29 to 1.50 % with the treatment (MW at 150ppm SA under I₃) and eugenol increased from 0.26 to 1.98% at maximal yield with (MW at 100ppm SA under I_1).

Results in the same table (8) revealed that there was a prominent difference in basil oil content due to MW treatments which improved the quality of basil oil by increasing the main components linalool and 1,8 - Cineol % compared to non MW treatments. In this concern, Gharib (2006) revealed that the major components of basil oil was linalool ranged from 46.63 to 43.32% and SA increase the production of eugenol thus basil is a good source of antioxidants in the diet.

Table 7. Mean comparisons for interaction effects of irrigation water type, irrigation intervals and salicylic acid foliar
spraying on yield of fresh herb (ton /fed), dry herb (ton /fed), Essential oil percentage (%) and oil yield (L/fed)
of Ocimum basilicum L. in the two cuts during the two growing seasons (2018 and 2019).

						1 st seas	on			
Treatmen	its		Yield of f (ton	resh herb /fed)	Yield of (ton	dry herb /fed)	Essen percent	tial oil age (%)	Oil (L/	yield fed)
Water type	Irrigation interval	Salicylic acid	1 st cut	2 nd cut	1 st cut	2 nd cut	1 st cut	2 nd cut	1 st cut	2 nd cut
		0	3.21p	3.11s	0.71tu	0.69w	0.12j	0.12f	3.847h	3.737g
	I ₁ (every	50 ppm	3.37m	3.24p	0.77p	0.77q	0.15hi	0.14ef	5.057fg	4.537fg
er	2 days)	100 ppm	3.441	3.300	0.790	0.77q	0.15hi	0.15ef	5.160fg	4.960ef
) xa		150 ppm	3.59a	3.43n	0.800	0.780	0.16gh	0.15ef	5.743ef	5.147ef
SA.		0	3.24no	3.16rs	0.71 st	0.71u	0.14i	0.14ef	4.540gh	4.380fg
-ĘĘ:	I ₂ (every	50 ppm	3.73j	3.60m	0.83n	0.81n	0.17g	0.17de	6.337ef	6.130ef
헕떡	4 days)	100 ppm	3.81i	3.691	0.85m	0.84m	0.17g	0.17de	6.470ef	6.273ef
Ű Ü		150 ppm	<u>3.94h</u>	<u>3.83k</u>	0.871	0.861	0.18f	0.18cd	7.087e	6.893e
uo		0	3.21op	3.13rs	0.71u	0.70v	0.13ij	0.13ef	4.177h	4.077g
Ž	I ₃ (every	50 ppm	3.27n	3.15r	0.72s	0.71t	0.14i	o.14ef	4.587fg	4.413fg
	6 days)	100 ppm	3.36m	3.21q	0.74r	0.74s	0.14i	0.14ef	4.700fg	4.490fg
		150 ppm	<u>3.37m</u>	<u>3.24p</u>	<u>0.75q</u>	0.75r	0.15hi	0.14ef	5.050fg	4.537fg
	- /	0	5.191	5.381	1.14j	1.18j	0.21ef	0.22bc	10.90/d	11.83/cd
	I ₁ (every	50 ppm	5.37d	5.531	1.20g	1.231	0.24cd	0.256	12.883bc	13.817bc
н	2 days)	100 ppm	5.38d	5.531	1.22f	1.24e	0.25cd	0.26b	13.457bc	14.3/3b
ate		150 ppm	<u>5.38d</u>	5.62e	1.23e	1.25d	0.25cd	0.26b	13.463bc	14.607b
Ì A A	T /	50	5.44c	5./3d	1.25d	1.28c	0.26bc	0.266	14.1406	14.903b
1 <u>3</u> 6.	I ₂ (every	50 ppm	5.63b	5.92c	1.25d	1.33b	0.29ab	0.33a	16.330a	19.523a
_Net	4 days)	100 ppm	5.70a	5.950	1.260	1.33b	0.29ab	0.33a	16.523a	19.650a
ag _		150 ppm	5.72a	<u>0.05a</u>	1.2/a	1.54a	0.30a	0.34a	1/.1858	20.495a
M	Τ (50	5.09g	5.33J	1.15K	1.10K	0.21ei	0.22DC	10.8700	12.000
	1 ₃ (every	50 ppm	5.22ei	5.40h	1.15]	1.181	0.2500	0.240	12.01/cd	12.900bc
	6 days)	100 ppm	5.22ei	5.400	1.1/1 1.10h	1.2011	0.24cd	0.240	12.3370C	12.9000C
L C D at 5	0/ loval	130 ppm	0.026	<u> </u>	0.007	1.22g	0.2400	0.240	12.38000	15.08500
L.S.D at 3	70 10001		0.030	0.025	2 nd season	0.004	0039	0.048	1.924	2.028
		0	3 22tu	3 14t	0.71tu	0.70m	013σ	0.22σ	4 187k	3 770i
	I ₁ (every	50 nnm	3.49n	3 4 90	0.77n	0.77iik	0.15g	0.14ef	5 593oh	4 880gh
ы	2 days	100 ppm	3.610	3 52n	0.790	0.79ii	0.17de	0.16de	6 140gh	5 633gh
ate	2 aays)	150 ppm	3 640	3.60m	0.800	0.80ii	0.17de	0.17de	6 193øh	6 113fg
Š.S		0	3.25st	3.24r	0.72st	0.711m	0.14fg	0.13fg	4.553ik	4.207ii
-Yiti	I2 (every	50 ppm	3.80n	3.681	0.84n	0.81hi	0.17de	0.17de	6.443fg	6.260fg
er-	4 days	100 ppm	3.87m	3.82k	0.85m	0.85gh	0.17de	0.17de	6.583fg	6.503fg
101		150 ppm	3.941	3.94i	0.871	0.879	0.19d	0.19d	7.490f	7.483f
uu j		0	3.22u	3.18s	0.71u	0.70lm	0.13g	0.12g	4.187k	3.817i
No.	I ₃ (everv	50 ppm	3.26s	3.25r	0.72s	0.71lm	0.15ef	0.14ef	4.887ii	4.553hi
	6 days	100 ppm	3.39r	3.36a	0.75r	0.74klm	0.15ef	0.14ef	5.080hi	4.707hi
	•	150 ppm	3.43q	3.41p	0.76q	0.75jkl	0.16f	0.15fg	5.493gh	5.110gh
		<u>Ó</u>	5.21j	5.35h	1.15j	1.18f	0.22c	0.23c	11.470e	12.313de
	I ₁ (every	50 ppm	5.46g	5.60f	1.20g	1.23de	0.24bc	0.26bc	13.090cd	14.570bc
	2 days)	100 ppm	5.55f	5.65e	1.22f	1.25cd	0.25b	0.26bc	13.880bc	14.690bc
ter	-	150 ppm	5.60e	5.71d	1.23e	1.26cd	0.25b	0.27b	14.003bc	15.407b
, wa		0	5.67d	5.84c	1.25d	1.29bc	0.26b	0.26bc	14.753b	15.180bc
	L (every	50 ppm	5.72c	6.07b	1.26c	1.33ab	0.30a	0.33a	17.173a	20.013a
Mg	4 days	100 ppm	5.76b	6.08b	1.27b	1.34ab	0.30a	0.33a	17.287a	20.063a
agı)	- uays	150 ppm	5.80a	6.12a	1.28a	1.35a	0.31a	<u>0.34a</u>	17.963a	20.797a
, Wi		0	5.17k	5.29i	1.14k	1.18f	0.22c	0.23c	11.377e	12.163e
	I ₃ (every	50 ppm	5.22j	5.38h	1.15j	1.18f	0.24bc	0.25bc	12.540de	13.443cd
	6 days	100 ppm	5.35i	5.49g	1.18i	1.23de	0.24bc	0.25bc	12.837cd	13.720bc
TOP		150 ppm	5.40h	5.57t	1.19h	1.23de	0.25b	0.25bc	13.500bc	13.933bc
L.S.D. at 5	% level		0.033	0.033	0.007	0.050	0.024	0.035	1.265	1.751

 Table 8. Effect of the interaction between irrigation water type, irrigation intervals and salicylic acid foliar spraying on the essential oil components of *Ocimum basilicum* L. during the second season 2019.

Treatments						Oil Componer	its (%)		
Water type	Irrigation interval	Salicylic acid	Limonene	1,8-cineol	Linalool	4- Terpinole	Borneol	Geranyl acetate	Eugenol
ic)	I_1	100 ppm	0.87	15.20	45.90	1.96	1.40	2.69	1.77
A. Je	(every 2 days)	150 ppm	0.31	19.00	48.00	0.79	1.90	5.00	1.77
₽ <u>5</u> 2	I_2	100 ppm	0.83	17.35	43.85	0.22	0.36	3.72	0.89
Na Na	(every 4 days)	150 ppm	-	16.70	46.11	0.22	1.00	3.84	0.26
	I_3	100 ppm	0.60	7.82	42.92	1.00	0.29	4.69	0.31
žÖ	(every 6 days)	150 ppm	0.20	9.69	45.02	0.69	0.51	1.13	0.75
	I.	50 ppm	2.13	19.81	47.12	5.14	1.39	3.80	0.92
er	(avery 2 days)	100 ppm	1.40	17.60	51.00	2.22	-	6.02	1.98
′at	(every 2 days)	150 ppm	0.92	19.54	49.17	3.81	0.91	5.74	1.90
s.	Τ.	50 ppm	0.72	20.72	55.28	1.03	0.98	3.84	1.70
l≩Ę.	12 (avaru 4 dava)	100 ppm	1.84	19.93	56.89	0.90	0.87	7.06	1.36
e S B	(every 4 days)	150 ppm	0.85	21.75	54.97	1.03	1.42	5.22	1.92
30	T.	50 ppm	0.68	13.15	48.11	6.37	1.44	2.71	1.93
Σ	13 (avaru 6 dava)	100 ppm	0.72	9.07	53.15	4.09	0.99	5.00	0.87
	(every 6 days)	150 ppm	0.87	10.18	53.02	5.12	1.50	4.32	1.93

Applied Irrigation water (IW)

Data in the Table (9) and Fig (1) illustrated that the type of water and SA treatments have not any effect on seasonal IW.

The highest seasonal values for IW were recorded under I_1 (irrigation every two days' treatment) are 4340.70 m³ fed⁻¹ (103.35 cm) and 4406.22 m³ fed⁻¹ (104.91 cm) in the two

growing seasons, respectively. Meanwhile, the lowest seasonal values were under I₃ (irrigation every six days' treatment) are 1417.08 m³ fed⁻¹ (33.74 cm) and 1480.08 m³ fed⁻¹ (35.24 cm) in the two growing seasons, respectively. The same table showed that, the total IW increased by decreasing irrigation interval (Number of days between the applied irrigation water) in the two growing seasons. Generally, the seasonal values of

IW can be descended in order $I_1 > I_2 > I_3$. Increasing the seasonal values of IW under treatment I_1 in comparison with other irrigation interval treatments I_2 and I_3 might be attributed to decreasing period between irrigations and hence increasing the amount of IW. The obtained results are in agreement with those obtained by (Ekren *et al.*, 2012; Mahmoud *et al.*, 2017 and Pejić *et al.*, 2017).

 Table 9. Irrigation water quantities added in m³/fed. during the plant's growth period.

					Applied	l Irrigation	Water (m	r'fed")			
Treatments			1	st Season	2018			2 nd 8	Season 20	019	
			Sali	icylic acid	l (ppm)			Salicy	lic acid (J	ppm)	
Water type	Irrigation interval	0	50	100	150	Mean	0	50	100	150	Mean
Nonmagnetic	I_1	4340.7	4340.7	4340.7	4340.7	4340.7	4406.2	4406.2	4406.2	4406.2	4406.2
water(non-	I_2	2205.0	2205.0	2205.0	2205.0	2205.0	2272.2	2272.2	2272.2	2272.2	2272.2
MW)	I3	1417.1	1417.1	1417.1	1417.1	1417.1	1480.1	1480.1	1480.1	1480.1	1480.1
Magnatia	I_1	4340.7	4340.7	4340.7	4340.7	4340.7	4406.2	4406.2	4406.2	4406.2	4406.2
water (MW)	I_2	2205.0	2205.0	2205.0	2205.0	2205.0	2272.2	2272.2	2272.2	2272.2	2272.2
water (IVI W)	I_3	1417.1	1417.1	1417.1	1417.1	1417.1	1480.1	1480.1	1480.1	1480.1	1480.1
			Applied I	Irrigation	Water (m ³ f	fed ⁻¹ and crr	ı)				
Trastmonts				1 st Sease	on			2	nd Season		
meannenns			m ³ fed ⁻¹		0	Cm	m ³ 1	fed ⁻¹		Cm	
Irrigation wate	r type (A)										
Nonmagnetic v	water(non-MW)		2654.3		6	3.2	271	9.5		64.75	
Magnetic wate	r (MW)		2654.3		6	3.2	271	9.5		64.75	
Irrigation inter	vals (B)										
I ₁			4340.7		10)3.8	440)6.2		104.9	
I ₂			2205.0		5	2.5	227	2.2		54.1	
I3			1417.1		3.	3.7	148	30.1		35.24	
Salicylic acid (C)										
0			2654.3		6	3.2	271	9.5		64.75	
50 ppm			2654.3		6	3.2	271	9.5		64.75	
100 ppm			2654.3		6	3.2	271	9.5		64.75	
150 ppm			2654.3		6	3.2	271	9.5		64.75	

Fig. 1. Effect of irrigation interval treatments on seasonal irrigation water applied (IW, cm) for basil in the average two growing seasons.

Productivity of irrigation water (PIW)

Data presented in Table (10) and Fig (2&3) showed that productivity of irrigation water based on fresh yield (PIW_f) and productivity of irrigation water based on dry yield (PIW_d). In this study, PIW values from the irrigation interval treatment I₃was generally high when compared with the other treatments I₁and I₂. Productivity of irrigation water (PIW) was affected by the three studied treatments (type of irrigation water, irrigation interval and spraying of antisalinity SA) influenced on yield.

 Table 10. Effect of water types, irrigation intervals and salicylic acid foliar spraying on productivity of irrigation water (PIW, kg m⁻³) of Ocimum basilicum L. during the two growing seasons (2018 and 2019).

					PIW based (on fresh yiel	d (kg m³)		
Treatments Water type Nonmagnetic water(non-MW) Magnetic water(MW) Treatments Water type Nonmagnetic water(non-MW) Magnetic			1 st Sea	ason 2018			2nd Se	ason 2019	
	-		Salicylic	acid (ppm))		Salicylic	acid (ppm)	
Treatments Water type Image: Comparison of the system	Irrigation interval	0	50	100	150	0	50	100	150
Nonmognatia	I ₁	1.46	1.52	1.55	1.62	1.44	1.58	1.62	1.64
Nonnagnetic	I_2	2.89	3.32	3.40	3.52	2.86	3.29	3.39	3.47
water (non-ivi w)	I_3	4.48	4.54	4.63	4.66	4.32	4.40	4.56	4.62
M. C	I1	2.44	2.51	2.51	2.53	2.40	2.51	2.54	2.57
Magnetic	I_2	5.07	5.24	5.28	5.33	5.07	5.19	5.21	5.24
water(IVI w)	I_3	7.36	7.49	7.50	7.54	7.07	7.16	7.32	7.41
					PIW based	on dry yield	(kg m^3)		
Treatments			1 st Sea	ason 2018			2 nd Se	ason 2019	
			Salicylic	acid (ppm)	1		Salicylic	c acid (ppm)	
Water type	Irrigation interval	0	50	100	150	0	50	100	150
Nonmognatia	I1	0.323	0.352	0.362	0.366	0.350	0.384	0.393	0.397
Nonnagnetic	I_2	0.644	0.744	0.766	0.785	0.691	0.797	0.819	0.841
water (non-ivi w)	I ₃	0.995	1.009	1.044	1.059	1.047	1.061	1.101	1.115
Ma	I ₁	0.534	0.560	0.567	0.571	0.581	0.606	0.615	0.620
wagnetic water (MW)	I_2	1.147	1.175	1.179	1.188	1.223	1.254	1.259	1.267
water (IVI W)	I_3	1.623	1.644	1.680	1.701	1.709	1.730	1.770	1.790

 PIW_{f} = productivity of irrigation water based on fresh yield PIW_{d} = productivity of irrigation water based on dry yield.

Fig. 2. Effect of different treatments on productivity of irrigation water based on fresh yield (PIWt) for basil in the average two growing seasons.

Fig. 3. Effect of different treatments on productivity of irrigation water based on dry yield (PIW_d) for basil in the average two growing seasons.

The highest values recorded under I₃ (irrigation every six days) in the two growing seasons were 7.54 and 7.41kg m⁻³ (PIW_f) while the values were 1.701 and 1.790 kg m⁻³ (PIW_d) under the same treatment I₃, respectively. Meanwhile, the lowest values determined at I1 (irrigation every two day) were 1.46 and 1.44 kg m⁻³ (PIW_f) while the values were 0.323 and $0.350 kg\ m^{\text{-3}}$ (PIW_d) in the first and second seasons, respectively. Under these conditions, the positive effect of irrigation on yield, PIW and quality characteristics of basil have evaluated. Results were in line with findings by Ekren et al., 2012. Generally, the mean values of PIW_f or PIW_d under type of water, irrigation interval and foliar spraying with SA treatments can be descended in order MW > non-MW, $I_3 > I_2$ > I₁ and 150 ppm SA > 100 ppm > 50ppm > 0 in the two seasons. Increasing the mean values of PIW_f and PIW_d under MW, I₃ and 150ppm SA in comparison with other treatments in the two seasons may be due to re-distribution cations and ions for salinity irrigation water resulted in adsorption and absorption nutrient elements by increasing uptake plants under MW, decreasing amount of irrigation water and increasing basil yield (under I₃ with 150 ppm SA) effect of increasing resistance or tolerated plants for salinity conditions. Defined as the increase in yield per unit of irrigation water applied, irrigation water use efficiency (Iwue = PIW) can be calculated if the amounts of water given by irrigation and actual yield increase from irrigation are known (Howell, 2001). Iwue provides the most realistic assessment of the irrigation effectiveness (Pejić et al., 2014).

Metabolic Responses

Effect of irrigation water type

Table (11) displayed that MW caused highly significant changes in photosynthetic pigments, carbohydrate content and crude protein through the two growing seasons.

chlorophylls content of leaf is a reflection of basil quality. MW treatments showed a highly significant increase in chlorophyll a, chlorophyll b, carotenoids and consequently total pigments over the non- MW treatments by about 59.6, 88.7; 50.0, 94.4; 26.1, 78.4 and 46.3, 92.8% correspondingly for the two cuttings in the 1st season while 50.3, 71.8; 52.1, 82.0; 79.3, 95.8 and 61.3, 81.4% in that order in the 2nd season. In the meantime, a significant increase on carbohydrate content and crude protein in response to MW treatments. These increases in the two cuttings were 53.6, 59.5 and 47.4, 67.4% respectively in the 1st season while 53.6, 62.2 and 56.3, 65.7% in the 2nd season over non-MW treatments. As a consequence, MW treatments enhanced all photosynthetic pigments, carbohydrate and protein contents at salt stress while non-MW caused physiological disorders. These results in contract with Trivellini et al., 2014 who said that salinity influences on the rate of photosynthesis and the synthesis of hormone. Bione et al., 2014 reported that under salt stress, basil plants suffer from reduction in all evaluated metabolic variables. Photosynthetic measurements increased by magnetic conducts and MW technique has a positive effect on alleviating salinity effects (Fatahallah et al., 2014 on bean and Bseleh et al., 2016 on oregano). Hassan et al., 2017 stated that MW enriched the chl a, chl b and carotenoids compared with the control. The positive effect of MW on plant may be attributed to easily absorption of water and minerals leading to the improvement of assimilation of nutrients as MW expands surface tension, conductivity, H₂ bonding and solubility of minerals in soil. Moreover, MW affects the formation of new protein bands and growth promoters in plants causing increasing of protein contents (El-Sayed, 2014).

Effect of irrigation intervals

Data in Table (11) indicated that the irrigation intervals had a significant effect on all photosynthetic pigments, carbohydrate content and crude protein for the two cuttings in both seasons. The patterns of chlorophyll a, chlorophyll b, carotenoids and consequently total pigments as well as total carbohydrates and protein contents were elicited under the irrigation every 4 days (I2) in relation to 2 and 6 days interval for two cuts in both seasons with some exceptions such as in the 1st cut in the 1st season, irrigation every 2 days (I1) surpassed the other intervals where it produced the highest value of carbohydrates content in addition the 2nd cut in the 1st season and the 1st cut in the 2nd season stimulate the crude protein content. Similar results were obtained by Fakhraei Lahiji et al., 2011 who reported that ten days interval enhanced the Gladiolus properties further than 15 days interval and reduce the soil evaporation. Jaberi et al., 2019 on fenugreek stated that irrigation interval (every 12 days) increased carbohydrate, chlorophyll b and ash and decreased chlorophyll a and K. Increasing the mean values of the abovementioned parameters under irrigation interval (I2) comparing with other irrigation treatments I1 and I3 might be owing to that I2 treatment received the appropriate amount of water applied which upturn the solubility of nutrients so the nutrients uptake by plants improved and metabolites increased. Mahdavikia et al., 2019 displayed that chlorophyll content and relative water content were inhibited by water limitation, but improved carotenoids Effect of salicylic acid

All metabolic patterns illustrated in Table (11) were stimulated in response to application of SA compared with their corresponding controls for the two cuttings in both

growing seasons. The higher level of SA (150 ppm) in relation to respective control values had extremely significant effects on chlorophyll a, chlorophyll b, carotenoid, total carbohydrate and crude protein in both studied seasons. The percentages of increments in total pigments, total carbohydrates and crude protein of the two cuts in response to foliar spraying of 150ppm SA were 19.1, 17.6; 8.8, 7.5 and 14.4, 10.9 percentage correspondingly in the 1st growing season in relation to respective controls while upsurges in the 2nd season determined 16.7, 15.1; 8.8, 8.5 and 13.7, 12.1 percentage, respectively. These findings were in line with Gharib (2006) who quoted that applied SA (10^{-4} M) increased photosynthetic pigments and carbohydrates. Jalal *et al.*, 2012 noted that SA at 0.05 mM increased photosynthetic pigments. Al-Qubaie, 2013 stated that SA at 200ppm stimulates chlorophyll a, b, carotenoids and total chlorophylls, the positive effects of SA may be owing to its effect on alleviating the negative effects of salinity facilitating uptake of nutrients especially Mg and sugars biosynthesis result in enhancing pigments.

 Table 11. Effect of irrigation water type, irrigation intervals and salicylic acid foliar spraying and their interactions on the experimental traits of *Ocimum basilicum* L. in the two cuts during the two growing seasons (2018 and 2019).

						18	t season	(2018)				
	C	hla	С	hl h	Caro	tenoids	Total 1	nioments	Total Ca	rbohydrates	Crude	nrotein
Treatments	(mg	/o fw)	(mg	/ofw)	(mc	o/o fw)	(mo	/o fw)	10tul Cu	(%)	, cruu	%)
	1 st cut	2^{nd} cut	1 st cut	2 nd cut	1 st cut	2^{nd} cut	1 st cut	2^{nd} cut	1 st cut	2 nd cut	1 st cut	2 nd cut
Irrigation water typ	e (A)											
Nonmagnetic	1.41b	1.41b	1.24b	1.25b	1.15b	1.11b	3.80 b	3.77b	32.83b	32.72b	15.45b	14.67b
Magnetic	2.25a	2.66a	1.86a	2.43a	1.45a	1.98a	5.56a	7.07a	50.43a	52.20a	22.78a	24.56a
F. test	*	**	*	**	**	*	*	**	**	**	**	**
L.S.D at 0.05	0.004	0.011	0.024	0.006	0.100	0.007	0.370	0.403	0.055	1.560	0.003	0.0138
Irrigation intervals(B)											
I ₁ (every 2 days)	1.71c	2.10b	1.51b	1.81b	1.26c	1.46c	4.48b	5.37b	44.14a	42.65b	19.28b	19.86a
I ₂ (every 4 days)	2.03a	2.35a	1.65a	2.01a	1.35a	1.70a	5.03a	6.06a	41.50b	44.75a	19.40a	19.88a
I ₃ (every 6 days)	1.75b	1.96b	1.49c	1.70c	1.29b	1.48b	4.53b	5.14b	39.23c	39.97c	18.67c	19.11b
F. test	**	*	*	*	*	*	*	**	**	*	*	**
L.S.D at 0.05	0.003	0.151	0.004	0.009	0.006	0.006	0.261	0.442	0.046	0.971	0.005	0.081
Salicylic acid (C)												
0	1.64d	1.95d	1.43d	1.69d	1.17d	1.41d	4.24d	5.05d	39.62d	40.65d	17.75d	18.65d
50 ppm	1.80c	2.11c	1.51c	1.80c	1.28c	1.54c	4.59c	5.45c	41.42c	42.38c	18.94c	19.28c
100 ppm	1.88b	2.20b	1.59b	1.88b	1.34b	1.57b	4.81b	5.65b	42.38b	43.10b	19.47b	19.85b
150 ppm	1.99a	2.30a	1.67a	1.98a	1.40a	1.66a	5.06a	5.94a	43.09a	43.68a	20.30a	20.68a
F. test	*	**	*	*	*	*	**	**	**	*	*	*
L.S.D at 0.05	0.009	0.010	0.008	0.007	0.007	0.005	0.016	0.025	0.042	1.740	0.010	0.081
Interactions												
AXB	**	*	**	*	**	*	*	**	**	**	*	*
AXC	**	*	**	*	*	NS	*	*	**	*	*	*
BXC	**	*	*	*	*	NS	*	*	**	*	*	*
AXBXC	**	**	**	*	**	*	*	**	**	**	**	**
.	<i>(</i>))				2"	^a season (2	2019)					
Irrigation water typ	e(A)	1.001	1.50	1 501	1 0 11	1 1 01	4 701	150	22.051	22.021	15 701	1.5 411
Nonmagnetic	1.93b	1.88b	1.56b	1.50b	1.21b	1.18b	4./0b	4.56b	32.85b	32.82b	15./8b	15.41b
Magnetic	2.90a	3.23a	2.51a	2./3a	2.1/a	2.31a	7.58a	8.2/a	50.46a	53.23a	24.6/a	25.54a
F. test	** 0.00 0	* 0.01 <i>C</i>	** 0.0 0 1	**	*	** 0.017	** 0.0 0 0	** 1.00	**	**	** 0.7()	**
L.S.D at 0.05	0.002	0.016	0.021	0.090	0.006	0.017	0.820	1.00	0.055	0.055	0.762	1.232
Irrigation intervals(B)	0.521	2.011	2.001	1 (11-	171-	C 021-	C 221-	41 521	42.001	20.40-	20.201
I ₁ (every 2 days)	2.26C	2.530	2.010	2.090	1.640	1./1C	6.03D	0.330	41.550	42.900	20.49a	20.296
I2 (every 4 days)	2.39a	2.08a	2.23a	2.24a	1.//a 1.67h	1.858	0.39a	0.75a	44.1/a	45.54a	20.39aD	21.00a
I3 (every 6 days)	2.300	2.40C *	1.000	2.010	1.070	1./00	3.79C	0.230 **	39.200 **	40.05C *	19.790 NG	20.00C **
Γ . lest	0.005	0.012	0.007	0.006	0.044	0.029	0.015	0.010	0.046	0.046	NS 0.650	0.127
L.S.D at 0.05 Salicylic acid (C)	0.005	0.012	0.007	0.090	0.044	0.056	0.015	0.019	0.040	0.040	0.039	0.137
Sancyne actu (C)	2 25d	2 37d	1.8/h	1 0/c	1 56d	1.64d	5 65d	5 95c	30.644	41.01d	18 874	10 204
50 ppm	2.25u 2.38c	2.57u 2.55c	1.040	2.00h	1.50u	1.04u 1.77c	5.05u	5.95C	$\frac{39.040}{11.04c}$	41.01u 42.81c	10.07u	20.30c
100 ppm	2.300	2.55C	$2 10_{2}$	2.070 2.16h	1.07C	1.77C	6.04C	6.58h	41.44C	42.01C	20.62h	20.30C
150 ppm	2.400	2.000	2.10a	2.100	1.750	1.820	6.589	6.852	42.400	43.770	20.020	20.800
F test	2.30a *	2.71a *	2.21a *	2.20a **	1.01a **	1.00a **	0.50a *	0.05a *	+J.12a *	++.+)a *	21.4Ja **	21.52a **
LSD at 0.05	0.064	0.008	0 147	0.072	0.011	0.036	0 171	0 189	0.042	0.042	0.265	0 319
Interactions	0.004	0.000	0.177	0.072	0.011	0.050	0.1/1	0.107	0.072	0.042	0.205	0.017
AXB	*	**	*	**	*	NS	*	*	*	*	NS	**
AXC	*	**	*	**	*	*	*	*	*	*	**	NS
BXC	*	**	NS	**	NS	*	NS	*	*	*	*	NS
AXBXC	**	**	**	**	**	**	**	**	*	**	*	*

Effect of the interactions

The interaction between water types and irrigation intervals showed a significant effect for all experimental metabolic patterns except for carotenoids in the 2^{nd} cut and crude protein in the 1^{st} cut throughout the 2^{nd} season as observable in Table (11). Also, the interactions of water types X anti-salinity SA exhibited a significant result for all mentioned traits except for carotenoids in the 2^{nd} cut in the 1st seasons and crude protein in the 2^{nd} cut in the 2^{nd} growing season. In the meantime, the interaction of irrigation intervals X anti-salinity SA indicated a remarkable result on some experimental traits and not for others such as carotenoids in the 2^{nd} cut through the 1^{st} season while chlorophyll b, carotenoids and total pigments in the 1^{st} cut and crude protein in the 2^{nd} cut throughout the 2^{nd} growing season showing nonsignificant effect.

J. of Plant Production, Mansoura Univ., Vol 11 (12), December, 2020

Results in Table (12) indicated that the interaction between all considered factors significantly encouraged all metabolic patterns in both cuts during the two studied seasons. All experimental metabolites in plants irrigated with non MW improved by increasing SA levels in relation to unsprayed treatments under all irrigation intervals.

Table 12. Mean comparisons for interaction effects of irrigation water type, irrigation intervals and salicylic acid foliar spraying on the experimental traits of *Ocimum basilicum* L. in the two cuts during the two growing seasons (2018 and 2019).

Treatments			1 st season											
			Chl a (mg/g fw)		Chl b (mg/g fw)		Carotenoids (mg/g fw)		Total pigments (mg/g fw)		Total Carbohydrates (%)		Crude protein (%)	
Water type	Irrigation interval	Salicylic acid	1 st cut	2^{nd} cut	1 st cut	2 nd cut	1 st cut	2^{nd} cut	1 st cut	2 nd cut	1 st cut	2 nd cut	1 st cut	2 nd cut
Nonmagnetic (Mo)	Interval I1 (every 2 days) I2 (every 4 days)	0 50 ppm	1.22q 1.330	1.22r 1.32p	1.15q 1.16pq	1.12s 1.17q	1.06p 1.11n	1.02n 1.03n	3.43t 3.60r	3.36v 3.52s	30.12t 31.88q	30.10u 31.78o	13.97v 15.23r	13.950 14.15mn
		100 ppm 150 ppm 0	1.40n <u>1.49m</u> 1.27p	1.400 <u>1.53n</u> 1.26q	1.23n <u>1.311</u> 1.17op	1.21p <u>1.32n</u> 1.14r	1.15m <u>1.19kl</u> 1.090	1.05m <u>1.171</u> 1.03n	3.78p 3.99n 3.53s	3.66q 4.02n 3.43u	32.96p 34.520 30.18t	32.59n 34.39m 30.18s	15.870 16.96m 14.22t	14.44Kl <u>15.89i</u> 14.09mno
		50 ppm 100 ppm	1.51m 1.651	1.51n 1.67m	1.291 1.33k	1.30o 1.37m	1.181 1.20k	1.18kl 1.21j	3.48n 4.18m	3.990 4.25m	34.82n 37.73m	34.721 37.68k	15.04s 15.23r	14.48k 14.79j
	I3 (every 6 days)	150 ppm 0 50 ppm	1.79k 1.23q 1.29p	1.831 1.22r 1.28g	<u>1.45j</u> 1.15q 1.180	<u>1.541</u> 1.14r 1.15r	<u>1.25j</u> 1.06p 1.12n	1.301 1.02n 1.03n	<u>4.491</u> 3.44t 3.59r	4.671 3.38v 3.46t	<u>39.601</u> 30.13u 30.22t	<u>39.28</u> 30.12t 30.20r	17.171 14.18u 15.3q	16.84h 14.05no 14.17mn
		100 ppm 150 ppm	1.320 1.39n	1.32p 1.410	1.23n 1.27n	1.21p 1.29o	1.16m 1.19kl	1.05m 1.19k	3.71q 3.850	3.58r 3.89p	30.75s 30.99r	30.75q 30.86p	15.75p 16.44n	14.26lm 14.97j
Magnetic (M1)	I ₁ (every 2 days)	0 50 ppm 100 ppm	2.00i 2.08h 2.17f	2.641 2.79f 2.90e	1.70h 1.78g 1.84e	2.25i 2.38g 2.47e	1.27i 1.42f 1.39g	1.68h 1.89f 1.89f	4.97i 5.28h 5.40g	6.57j 7.06g 7.26f	49.13g 50.75f 51.25e	51.27f 53.68e 53.68e	21.97i 22.89g 23.43d	23.99d 24.98b 25.70a
		150 ppm 0	2.29d 2.19f	2.99d 2.89e	1.91d 1.78g	2.59d 2.44f	1.47e 1.29h	1.97e 1.98de	5.67e 5.26h	7.55d 7.31e	51.42d 51.93c	53.70d 53.77c	23.90c 21.89j	25.79a 23.02f
	I ₂ (every 4 days)	50 ppm 100 ppm 150 ppm	2.47c 2.60b 2.74a	3.15c 3.21b 3.27a	1.95c 2.08b 2.16a	2.63c 2.79b 2.84a	1.41f 1.62b 1.73a	2.23c 2.30b 2.35a	5.83c 6.30b 6.63a	8.01c 8.30b 8.46a	52.936 52.92b 53.04a	54.13b 54.13b 54.14a	23.28e 23.94b 24.39a	24.13d 25.88a 25.79a
	I ₃ (every 6 days) 5% level	0 50 ppm 100 ppm	1.95j 2.10h 2.14g	2.46k 2.59j 2.67h	1.64i 1.70h 1.82f	2.07k 2.15j 2.24i	1.27i 1.42f 1.51d	1.73g 1.89f 1.90f	4.86k 5.22i 5.47f	6.26k 6.63i 6.81h	46.22k 47.89j 48.66i	48.46i 49.78h 49.80g	20.25k 21.89j 22.61h	22.82g 23.74e 24.05d
		150 ppm	2.25e 0.023	2.75g 0.024	1.91d 0.019	2.32h 0.017	1.59c 0.016	1.99d 0.012	5.75d 0.038	7.06g 0.028	48.98h 0.103	49.80g 4.259	22.93f 0.016	24.78c 0.199
							2nd seaso	n						
Nonmagnetic (M ₀)	I ₁ (every 2 days)	0 50 ppm 100 ppm	1.78t 1.87q 1.95p	1.63t 1.84p 1.91o	1.31u 1.51r 1.60a	1.24s 1.41o 1.49m	1.13q 1.17op 1.17op	1.05s 1.10q 1.13p	4.22u 4.55r 4.72p	3.92t 4.35q 4.530	30.14t 31.90q 32.98p	30.11t 31.87q 32.95p	14.17m 15.81j 16.54hi	14.12l 15.03jk 15.67ji
		150 ppm 0	2.01n 1.80s	1.98m 1.78r	1.72 o 1.34t	1.61k 1.34q	1.24m 1.15pq	<u>1.20mn</u> 1.10q	4.97m 4.29t	4.79m 4.22r	34.540 30.20t	34.510 30.17t	17.03h 14.63lm	16.55gh 14.63kl
	I ₂ (every 4 days)	50 ppm 100 ppm 150 ppm	1.94p 2.03m 2.24l	1.91o 2.021 2.20k	1.65p 1.81n 1.97m	1.62k 1.70j 1.89i	1.21n 1.27l 1.39i	1.21m 1.26l 1.39i	4.80o 5.111 5.60k	4.74n 4.98k 5.48i	34.84n 37.75m 39.62l	34.81n 37.72m 39.591	15.12kl 15.49jk 17.90g	15.62ij 16.02hi 16.98g
	I ₃ (every 6 days	0 50 ppm 100 ppm	1.79st 1.83r 1.88q	1.70s 1.82q 1.82q	1.33tu 1.38s 1.49r	1.29r 1.36p 1.47n	1.13q 1.18o 1.22mn	1.08r 1.17o 1.19n	4.25u 4.39s 4.59q	4.07s 4.35q 4.48p	30.15t 30.24t 30.77s	30.12t 30.21t 30.74s	14.30m 15.46jk 15.93ij	14.12l 15.00jk 15.00jk
Magnetic (M1)	I ₁ (every 2 days)	150 ppm 0 50 ppm	1.980 2.67i 2.82g	1.96n 3.02i 3.19g	1.62q 2.34i 2.45g	1.581 2.63f 2.75d	1.31k 1.93i 2.07h	1.29k 2.14i 2.29g	4.91n 6.94i 7.34g	4.831 7.79h 8.23f	31.01r 49.16g 50.78f	<u>30.98r</u> 51.93g 53.55f	16.98h 23.90de 24.99b	16.12hi 24.17f 25.04d
		100 ppm 150 ppm 0	2.91f 3.00d 2.95e	3.28e <u>3.37d</u> 3.11h	2.54f 2.62d 2.59e	2.75d 2.84c 2.68e	2.15f 2.24d 2.06h	2.37f 2.43d 2.25h	7.60e 7.86d 7.60e	8.40d 8.64c 8.04g	51.28e 51.45d 51.96c	54.05e 54.22d 54.73c	25.70a 25.81a 23.34ef	25.83c 25.92c 24.25ef
	I ₂ (every 4 days	50 ppm 100 ppm 150 ppm	3.20c 3.27b 3.31a	3.40c 3.48b 3.54a	2.74c 2.83b 2.91a	2.83c 2.90b 2.96a	2.27c 2.38b 2.43a	2.13d 2.49b 2.52a	8.21c 8.48b 8.65a	8.66c 8.87b 9.02a	52.96b 52.95b 53.07a	55.73b 55.72b 55.84a	24.60bc 25.90a 26.14a	26.11c 26.99b 27.84a
	I ₃ (every 6 days	0 50 ppm 100 ppm	2.48k 2.61j 2.73h	2.95j 3.11h 3.11h	2.131 2.22k 2.30j	2.48h 2.57g 2.64f	1.95i 2.12g 2.18e	2.24h 2.39e 2.45c	6.56j 6.95i 7.21h	7.67i 8.07g 8.20f	46.25k 47.92j 48.69i	49.02k 50.69j 51.46i	22.85f 23.79de 24.13cd	23.93f 25.00de 25.63cd
L.S.D. at	t 5% level	150 ppm	2.81g 0.020	3.22f 0.019	2.39h 0.022	2.67e 0.020	2.26cd 0.026	2.45c 0.019	7.46f 0.031	8.34e 0.038	49.01h 0.103	51.78h 0.103	24.84b 0.650	25.71cd 0.781

The significant increase in the metabolic traits viz. total photosynthetic pigments, total carbohydrates and crude protein content induced by 150 ppm SA level under the appropriate irrigation interval (I₂) in plants treated with non MW determined 27.2, 36.2; 31.2, 30.2 and 20.7, 19.5%, respectively for the two cuts in the 1st season compared to unsprayed plants while 30.5, 29.9; 31.2, 31.2 and 22.4, 16.1% in that order during the 2nd one. The treatments irrigated with MW under all irrigation intervals for the two cuts in the two growing seasons significantly surpassed total photosynthetic pigments, total carbohydrates and crude protein content in relation to the respective controls of non-

MW. The significant increments in chlorophyll a, chlorophyll b, carotenoids subsequently total photosynthetic pigments induced by the MW treatments under the proper irrigation intervals (every 4 days) at 150 ppm SA over their corresponding controls were 38.0, 78.7; 49.0, 84.4; 38.4, 80.8 and 47.7, 81.2% for the two cuts respectively in the 1st season in that order of above traits, while those increments were 47.8, 60.9; 47.8, 56.6; 74.8, 81.3 and 54.5, 64.6% in the 2nd season. Additionally, the increases in total carbohydrates and crude protein content in response to the treatment of (MW+ I2+ 150ppm SA) which recorded the supreme effect were 33.9, 37.8 and 42.1, 53.7 for the two cuts in the 1st season in that

order of mentioned traits while 33.9, 41.0 and 46.0, 64.0% in the 2nd season. These results on metabolic patterns induced by these interactions may be due to the effect of SA, magnetic field as helper in alleviation of saline stress effects and modification the key of cellular processes such as gene transcription (Bagherifard et al., 2015). SA is an essential signal molecule modulating plant response to water stress (Hesami et al., 2012). The recorded results were symmetry with Jalal et al., 2012 resulted that SA reduced the damage effect of water deficit thus improved photosynthetic pigments. El-Sayed (2014) concluded that chlorophyll a, b, carotenoids, total carbohydrates and protein were stimulated by irrigation with MW. In addition Bseleh et al., 2016 showed that irrigation of oregano under salinity of groundwater by MW stimulated chlorophyll content. Bagherifard et al., 2015 mentioned that SA regulates mineral absorption and photosynthetic rate. it was generally more effective in enhancing photosynthetic rate (Ghasemzadeh and Jaafar, 2013 on Zingiber officinale). On the other hand, the decline under the irrigation by non MW owing to salinity disorders related to destruction of chloroplast and photosynthetic apparatus, decrease of chlorophyll biosynthesis, and the increase of activity of chlorophyllase (Kabiri et al., 2014).

CONCLUSION

Irrigation under trickle irrigation system with MW supplemented with 50 ppm SA are the most efficient approaches that mitigate the damaging effects of salinity of water and soil so, basil plants may be tolerant these environmental conditions of newly soils. These appliances stimulated plant growth, yield, production of top quantity and quality of oil and metabolites of basil. Also, irrigation interval every 4 days is the appropriate interval that saves irrigation water. This valuable modern technology was recommended to save irrigation water when only saline water is the available source under newly reclaimed sandy soils and to improve productivity of most medicinal and aromatic plants.

REFERENCES

- A.O.A.C. (1980). Official Method of Analysis, 13th ed. Association of Official Analytical Chemists. Washington DC.
- Abbas J, Ibrahim BA (2014). Effect of salicylic acid in some vegetative and fruit traits of the black bean. Iraqi Journal of Agricultural Sciences, 45(8): 845-853.
- Abbaszadeh B., Layeghhaghighi M., Azimi R., Hadi N. (2020). Improving water use efficiency through drought stress and using salicylic acid for proper production of *Rosmarinus officinalis* L. Industrial Crops and Products, Volume 144.
- Abdel–kader H.H., El-Gamal S.M.A, Hamza A.M., Massoud H. Y. and Youssef F.K (2014). Effect of irrigation intervals and foliar fertilization on lemongrass (*Cymbopogon Citratus* (Dc.) Stapf) plant: A- Effects on yield and essential oil production and constituents. J. Plant Production, Mansoura Univ., 5 (9): 1505-1522.
- Abdul Qadose A.M.S. and Hozayn M (2010). Response of growth, yield, yield components and some chemical constituents of flax for irrigation with magnetized and tap water. World Applied Science Journal, 8 (5): 630-634.

- Abedi, M.H., Seghatoleslami M.J. and Mousavi S.G.R. (2014). Effects of irrigation intervals and nitrogen fertilizer levels on vegetative and reproductive yields of basil (*Ocimum basilicum* L.) under Birjand conditions. Agroecology, 5(4): 502.
- Adamović S. (2012). Yield and quality of basil grown as a second crop under organic and conventional conditions. XVI International Eco-Conference, 315-319. Novi Sad, Serbia.
- Adams R.B. (1995). Identification of Essential Oil Components by Gas Chromatography/ Mass Spectroscopy. Illinois: 2nd ed. Allured Publishing, P. 468.
- Ahmed E.A., Hassan E.A., Tobgy K.M., Ramadan E.M. (2014). Evaluation of rhizobacteria of some medicinal plants for plant growth promotion and biological control. Ann. Agric. Sci., 59 (2): 273-280.
- Ahmed M. E. M. and 2N. I. Abd El-Kader (2016). The Influence of magnetic water and water regimes on soil salinity, growth, yield and tubers quality of potato plants. Middle East Journal of Agriculture Research, ISSN 2077-4605, 5 (2): 132-143.
- Ali M.H., Hoque M.R., Hassan A.A. and khair A. (2007). Effects of deficit irrigation on yield, water productivity and economic returns of wheat. Agricultural water management, 92 (3): 151-161.
- Al-Qubaie A.I. (2013). Response Jasminum Sambac Ait Plants to Spraying Salicylic Acid. JKAU: Met., Env. & Arid Land Agric. Sci., 24(1): 67-73.
- Aly M.A., Ezz T.M., Osman S. M. and Mazek A.A. (2015). Effect of magnetic irrigation water and some anti-salinity substances on the growth and production of valencia orange. Middle East J. Agric. Res., 4(1): 88-98.
- Amirjani M.R. (2013). Effects of drought stress on the alkaloid contents and growth parameters of *Catharanthus roseus*. ARPN J. Agric. Bio Sci., 8 (11): 745-750.
- Angooti F. and Nourafcan H (2015). Effects of application method and level of salicylic acid on some morphological characteristics of *Ocimum basilicum* L. leaves under sodium chloride salinity stress. Biological Forum, 7: 346-351.
- Attia H, Ouhibi C, Ellili A, Msilini N, Bouzaïen G, Karray N, Lachaâl M (2011). Analysis of salinity effects on basil leaf surface area, photosynthetic activity, and growth. Acta Physiologiae Plantarum, 33: 823-833.
- Ba, czek K., Kosakowska O., Gniewosz M., Gientka I. and We, glarz Z (2019). Sweet basil (*Ocimum basilicum* L.) productivity and raw material quality from organic cultivation. Agronomy, 9: 279.
- Bagherifard A., Bagheri A., Sabourifard H., Bagherifard G. and Najar M (2015). The effect of salicylic acid on some morphological and biochemistry parameters under salt stress in herb artichoke (*Cynara scolymus* L.). Research Journal of Fisheries and Hydrobiology, 10(10):745-750.
- Bahreininejad B., Razmjoo J. and Mirza M (2013). Influence of water stress on morpho-physiological and phytochemical traits in *Thymus daenensis*. Int. J. Plant Prod, 7: 151-166.
- Balouchi H.R. and Sanavy S.A.M.M. (2009). Electromagnetic field impact on annual medics and dodder seed germination. Int. Agrophysics, 23: 111-115.
- Bideshkia A. and Arvin M.J (2010). Effect of salicylic acid (SA) and drought stress on growth, bulb yield and allicin content of garlic (*Allium sativum*) in field. Plant Ecophysiology, 2: 73-79.

- Bione M.A., Paz V.D.S, Silva F., Ribas R.F., Soares T.M (2014).Growth and production of basil in NFT hydroponic system under salinity. Revista Brasileira de Engenharia Agrícola e Ambiental,18 (12):1228-1234. Portuguese.Available:http://10.1590/18071929/agriambi. v18n12p1228-1234
- Boix Y.F., Alemán E.I., TorresJ.M., Chávez E.R., Arruda R. do C. de O., Hendrix S., Beenaerts N., Victório C.P., LunaL.G., Manrique C.M. and Cuypers M (2018). Magnetically treated water on phytochemical compounds of *Rosmarinus officinalis* L. Interna. J. Enviro., Agric. and Biotechno. (IJEAB), 3(1): 297-303.
- Bowes K. and Zheljazkov V (2004). Essential oil yield and quality of fennel grown in Nova Scotia. Hort. Sci., 39(7):1640-1643.
- British Pharmacopoeia (2000). Determination of Volatile Oil in Drugs. The Pharmaceutical press. London. pp.1914.
- Bseleh M., Karajeh D. and Marei A (2016). The effects of using magnetic treatment brackish water in irrigation on the yield medical herbs "Origanum Vulgare L." I. J. Environ. & Agric. Res. (IJOEAR), 2(12): 108-114.
- Caliskan O., Kurt D., Temizel K.E. and Odabas M.S (2017). Effect of salt stress and irrigation water on growth and development of sweet basil (*Ocimum basilicum* L.). Open Agriculture, 2(1): 589-594.
- Conrath U., Chen Z., Ricigliano J.R. and Klessig D.F (1995). Two inducers of plant defense responses, 2, 6dichloroisonicotinic acid and salicylic acid, inhibit catalase activity in tobacco. *Proc. Natl. Acad. Sci. USA*, 92: 7143–7.
- Ekren S., Sonmez C., Ozcakal E., Kurttas Y.S.K., Bayram E., Gurgulu H (2012). The effect of different irrigation water levels on yield and quality characteristics of purple basil (*Ocimum basilicum* L.). Agric. Water Manag., 109: 155–161.
- El Sayed Hameda E. A. (2014). Impact of magnetic water irrigation for improve the growth, chemical composition and yield production of broad bean (*Vicia faba* L.) American Journal of Experimental Agriculture, 4(4): 476-496.
- El-Kholy S.A., Mazrou M.M., Afify M.M., El-Said N.A.M. and Zedan H.M.Z (2020). Effect of irrigation with magnetic water on vegetative growth, chemical contents and essential oil in rosemary grown in different levels of salinity. Menoufia J. Plant Prod., 5: 143 – 157.
- Fakhraie Lahiji M., Rahimi median A. and Safae Chaeikar S (2011). Effect of irrigation intervals and different mulches on some traits of *Gladiolus* cv. Rose Supreme. Seed and Plant Production Journal, 28(2):239-248.
- Fanous N.E., Mohamed A.A. and Shaban Kh. A (2017). Effect of magnetic treatment for irrigation ground water on soil salinity, nutrients, water productivity and yield fruit trees at sandy soil. J. Soil Sci., 57 (1): 113-123.
- Fatahallah M.A., Ali F.A., Gawish R.A. and Hassan D.M. (2014). Effect of water regimes and irrigation with magnetic and non-magnetic water on soil salinity and growth of bean plants. Minufiya J. Agric. Res., 39(5): 1643-1654.
- Gaber A (1985). Effect of water stress on respiration and photosynthesis. Ph. D. Thesis, Mansoura Univ., Egypt.
- Gerami F, Moghaddam P.R., Ghorbani R. and Hassani A (2016). Effects of irrigation intervals and organic manure on morphological traits, essential oil content and yield of oregano (*Origanum vulgare* L.). An. Acad. Bras. Ciênc., 88 (4).

- Gharib Fatma A.E. (2006). Effect of salicylic acid on the growth, metabolic activities and oil content of basil and marjoram. Int. J. Agri. Biol., 8(4).
- Ghasemzadeh A. and Jaafar H. Z. E (2013). Interactive effect of salicylic acid on some physiological features and antioxidant enzymes activity in ginger (*Zingiber* officinale Roscoe). Molecules, 18: 5965-5979.
- Ghilavizadeh A, Masouleh E.H., Zakerin H.R., Valadabadi S.A.R., Sayfzadeh S. and Yousefi M (2019). Influence of salicylic acid on growth, yield and macro-elements absorption of fennel (*Foeniculum vulgare Mill*) under water stress. JMPB,8(1): 67-75.
- Gomez K.A. and Gomez A.A (1984). Statistical Procedures, Res. 2nd Ed. John Wiley and Sons, Inc, New York,, USA.
- Grewal, H.S. and Maheshwari B.L (2011). Magnetic treatment of irrigation water and snow pea and chickpea seeds enhances early growth and nutrient contents of seedlings. Bioelectromagnetics, 32(1): 58-65.
- Hachicha M., Kahlaoui B., Khamassi N., Misle E. and Jouzdan O (2016). Effect of electromagnetic treatment of saline water on soil and crops. Journal of the Saudi Society of Agricultural Sciences. http://dx.doi.org/10.1016/ j.jssas. 2016.03.003
- Harborne J.B. (1984). Phytochemical Methods, Aguid to Modern Techniques of Plant Analysis. Chapman and Hall Press. London.
- Hashemabadi D., Zaredost F and Solimandarabi MJ(2015). The effect of magnetic water and irrigation intervals on the amount of the nutrient elements in soil and aerial Parts of Periwinkle(*Catharanthus roseus* L.). J. of Ornamental Plants, 5(3):139-149.
- Hassan F.A.S., Morsi M.M and Aljoudi N.G.S (2017). Alleviating the adverse effects of salt stress in rosemary by salicylic acid treatment. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 8(3):1980-1995.
- Hesami S., Nabizadeh E., Rahimi A and Rokhzadi A (2012). Effects of salicylic acid levels and irrigation intervals on growth and yield of coriander (*Coriandrum sativum*) in field conditions. Environmental and Experimental Biology 10: 113–116.
- Hiltunen R. and Holm Y (2003). Basil: the Genus Ocimum. CRC Press.
- Howell A. (2001). Enhancing water use efficiency in irrigated agriculture. Agronomy Journal, 93: 281–289.
- Hozayn M., Salama A.M., Abd El-Monem A.A., Hesham A.F (2016). The impact of magnetized water on the anatomical structure, yield and quality of potato (*solanum tuberosum*) grown under newly reclaimed sandy soil. Res J Pharm Biol Chem Sci 7(3):1059–1072.
- Jaberi M., Baradaran R., Mousavi Gh.R and Aghhavani Shajarl M.(2019) .Effect of Biofertilizers and Irrigation Management on phisiological Indices of Fenugreek (*Trigonella foenum-graecum*). Plant ecophysiology, 10 (32), 142-151.
- Jackson M.1 (1973). Soil Chemical Analysis. prentice Hall of India private, LTD New Delhi, P.187.
- Jalal Rewaa S., Bafeel Sameera O. and Moftah A.E (2012). Effect of salicylic acid on growth, photosynthetic pigments and essential oil components of Shara (Plectranthus tenuiflorus) plants grown under drought stress conditions. International Research Journal of Agricultural Science and Soil Science, ISSN: 2251-0044; 2(6) pp. 252-260.

- Kabiri R., Nasibi F. and Farahbakhsh H (2014). Effect of exogenous salicylic acid on some physiological parameters and alleviation of drought stress in Nigella sativa Plant under hydroponic culture. Plant protection science journal, 50(1): 43-51.
- Kalamartzis L., Dordas C., Georgiou P. and Menexes G. (2020). The use of appropriate cultivar of basil (Ocimum basilicum) can increase water use efficiency under water stress. Agronomy, 10:70; doi: 10.3390/agronomy 10010070.
- Klute A.C (1986). Water retention: laboratory Methods. In: A. koute (ed), Methods of Soil Analysis, part12nded. Agron. Monogr.9, ASA, Madison, W1 U.S.A: 635-660.
- Leithy S., EL-Meseiry T.A and Abdallah E.F (2006). Effect of biofertilizer, cell stabilizer and irrigation regime on rosemary herbage oil quality. J Appl. Sci.2: 773-779.
- Mahdavikia H., Rezaei-Chiyaneh E., Rahimi A.and Mohammadkhani N (2019). Effects of Fertilizer Treatments on Antioxidant Activities and PhysiologicalTraits of Basil (Ocimum basilicum L.) under Water Limitation Conditions. Journal of Medicinal Plants and By-products, 2: 143-151.
- Mahmoud M.A., Shala A.Y. and Rashed N.M (2017). The mutual effect of irrigation scheduling and foliar spray of silica nanoparticles on basil plant. J. Plant Production, Mansoura Univ., 8 (12):1303-1313.
- Mohamed Makarim A., Wahba H.E, Ibrahim M.E. and Abd-Elghani A (2014). Effect of irrigation intervals on growth and chemical composition of some Curcuma spp. plants. NUSANTARA BIOSCIENCE, 6(2): 140-145.
- Mohammadzadeh M., Arouiee H., Neamati S.H and Shoor M (2013). Effect of different levels of salt stress and salicylic acid on morphological characteristics of four mass native basils (Ocimum basilcum). International Journal of Agronomy and Plant Production, 4: 3590-3596.
- Mostafazadeh F.B., Khoshravesh M., Mousavi S and Kiani A (2011). Effects of magnetized water on soil sulphate ions in trickle irrigation. 2nd Int. Conference on Environmental Engineering and Applications, IPCBEE,17,© IACSITPress, Singapore.
- Naderianfar M., M. Azizi, Sh. Kohestani (2017). Determination of Water-Yield Basil Function Under Deficit Irrigation Conditions and Use of Nano Fertilizer. Progress in Agricultural Engineering Sciences 13(1), 51-69. DOI: 10.1556/446.13.2017.4
- Nguyen P.M., Kwee E.M and Niemeyer E.D (2010). Potassium rate alters the antioxidant capacity and phenolic concentration of basil (Ocimum basilicum L.) leaves. Food Chem., 123: 1235-1241.

- Page A. L., Miller R. H. and Keeney D. R. (1982). Methods of soil analysis. No. (9), Part 2. Chemical and Microbiological Properties. Am. Soc., Agron., Inc. Soil. Sci., Mad., Wisc., U.S.A.
- Pejić B., Adamović D., Maksimović L and Maĉkić K (2017). Effects of drip irrigation on yield, evaporatranspiration and water use efficiency of sweet basil (Ocimum basilicum L.) Ratar. Povert, 54 (3): 124-129.
- Pejić B., Gajić B., Bošnjak Dj., Striĉević R., Maĉkić K and Kresović B (2014). Effects of water stress on water use and yield of onion. Bulgarian Journal of Agricultural Science, 20: 297-302.
- Said-Al Ahl H.A.H. and Hussein M.S. (2010) Effect of water stress and potassium humate on the productivity of oregano plant using saline and fresh water irrigation. Ozean Journal of Applied Sciences, 3(1).
- Samadyar H., Rahi A.R., Shirmohammadi K., Taghizade F and Kadkhoda Z (2014). The effects of water electronic filtration (magnetic water) on alkaloids hyoscine seeds and some morphological traits in two species of Datura. Journal of Plants and Ecosystems, 10(40): 59-72.
- Sepaskhah A.R. (1977). Effect of soil salinity levels and plant water stress at various soybean growth stages. Can. J. Plant Sci., 57: 925-927.
- Silva T., Melo Filho J., Melo Gonçalves A., Sousa L., Moura J., Thiago Jardelino DiasT., Alvarez-Pizarro J.C., Pereira W.E. and Mendonça R.M.N (2018). Salicylic acid effect on Ocimum basilicum L. during growth in salt stress and its relationship between phytomass and gas exchange. Journal of Experimental Agriculture International, 22(4): 1-10.
- Teixeira da Silva J.A. and Dobránszki J (2014). Impact of magnetic water on plant growth. Environmental and Experimental Biology, 12: 137-142.
- Trivellini A., Gordillo B., Rodríguez-Pulido F.J., Borghesi E., Ferrante A., Vernieri P., Quijada-Morín N., González-Miret M.L and Heredia F.J (2014). Effect of salt stress in the regulation of anthocyanins and color of Hibiscus flowers by digital image analysis. Journal of Agricultural and Food Chemistry, 62: 6966-6974.
- Wallacce O.H. and Munger H.M. (1965). Studies of the physiological basis for yield differences. I. Growth analysis of six dry bean variaties, Crop Sci., 5: 343-348.
- Wu G., Zhang C., Chu L.Y and Shao H.B. (2007). Responses of higher plants to a biotic stress an agricultural sustainable development. J.Plant Interactions, 2(3): 135-147.

تخفيف الإجهاد الملحى على نبات الريحان بتقنية الرى بالماء الممغنط ورش حمض الساليسيلك تحت ظروف التربة الرملية بمنطقة قلابشو

جيهان فوزى أحمد مسعود 1 و منى عبد الحليم محمد المنصورى² اقسم بحوث النباتات الطبية والعطرية- معهد بحوث البساتين- مركز البحوث الزراعية- الجيزة- مصر

م بحوِث المقننات المائية والرى الحقلى۔ معهد الاراضي والمياه والبيئة۔ مركز البحوث الزراعية۔ مصر

محمد بحوث المقتنات المائية و الرى الحقلى- معهد الأراضى و المياه و البيئة- مركز البحوث الزراعية- مصر أجريت تجربة حقلية في تربة رملية بمزرعة خاصة في الاراضى المستصلحة الجديدة بمنطقة قلابشو، محافظة الدقهلية بمصر خلال الموسمين 2018 و 2019 بغرض در اسة تأثير نوع ماء الرى (الماء المغط والماء الغير معظو ويصل تركيز الاملاح الذائبة الكلية فيه لحوالى 630 جزء في المليون)، وقترات الرى المختلفة (2 ولمح 6 كيوم) و معاملة النباتات رشا بحمض السالسيك عند مستويات (٥، 50، 100 و100 جزء في المليون) على تخفيف الاجهاد الملحي والتي تتعرب قري الماء الغير معظو ويصل تركيز الاملاح الذائبة الكلية فيه لحوالى 630 جزء في المليون)، وقترات الرى المختلفة (2 ولمح 6 كيوم) و معاملة النباتات رشا بحمض السالسيك عند مستويات (٥، 50، 100 و100 جزء في المليون) على تخفيف الاجهاد الملحي والتي تتعكم بنورها على النمو، المحصول والصفات الأيضية لينات الريحان. وقد صممت التجربة في قطع منشقة مرتين في ثلاث مكررات، وقد أظهرت النتائج أن: الرى بالماء المعني على والمختلة (2 ولمح 6 كين النبات من صبغات النبور المختبرة - محصول العشب الطارج والجلف للغان وكذلك زيادة في كل من النسبة المنوية الزيت العطرى ومحصول الزيت للغان ومكوناته. إعماني محتوى النبات من صبغات التحليق الضوئي والكرب الطارج والبي المنوية الزيت العطرى ومحصول الزيت الغان ومكوناته. إن محصول زيادتمعنوية في محصول العشب الطارج والبون الغان وكذلك النسبة المنوية الزيت العلون و كان أعلى في الحشة الثانية عن الأولى في كل الموسمين زيادتمعنوية في محصول العشب الطارج والبول وللذات وكذلك النسبة المنوية الزيت الغان و كان أعلى في الحشة الثانية عن زيادتمعنوية في محصول العشب الطارج والبول النسبة المنوية الزيت العطرى و ومحصول الزيت الغان و كان أعلى في الحشة الأولى في كل الموسمين زيادتمعنوية في محصول العشب الطارج والماء الغير ممغط كما أدى الرش بحمض السالسيلك بكل تركيز ته في في عي الموالى المرى الى والمى المولي في كا الموسمين نيانيات من محرول الحقان ملحوظ في المثان وكيز العلاح عافي الرش بحمض السالسيلك بكل تركيز التم في في الموامي المري الى في المولي الى والماء الموسين زيادة معنوية في محصول العشب المولى وكذل الماء المعنوع ألى المورى ولي مع الس الساليلي في يركيز تاح في في المولي الى وي المى ولى المولى والماء مع معور الموسي في بلزولى ولي