Yield, Quality and Economic Evaluation for Onion grown at Different Densities under Weed Control Treatments

Marey, R. A.1*; L.S.M. Geries1 and A. M. Abd-El-Kareem2

ABSTRACT

Two field experiments were conducted during 2015/2016 and 2016/2017 seasons at Shandaweel Agriculture Research Station, Sohag Governorate, to study the effect of onion density and weed control treatments on vegetative growth, yield and quality of onion. Split plot design with three replicates was used. Onion plant density (240 000, 300 000, and 400 000 plants/fed.) occupied the main plots, whereas weed control treatments (hand hoeing (twice), Goal + Select (once), Goal + Select (twice), Ecopart + Select (once), Ecopart + Select (twice) and control) occupied the sub plots. Onion plants grown under the highest density (400 000 plants/fed.) attained the highest values of plant height and number of leaves/plant, while the lowest density (240 000 plants/fed.) attained the lowest values, in both seasons. Total yield/fed. for onion grown under high density were higher than those under other densities. Planting onion at low density recorded the highest values of number of leaves/plant and bulb weight were obtained by application of Goal + Select (twice), in both seasons. Average bulb weight, marketable yield/fed., culls yield/fed. and total yield/fed. were significantly decreased under weed control treatment, in both seasons. From this investigation, it could be concluded that using of the highest plant density (400 000 plant/fed.) and application of Goal + Select (twice) could be recommended for the highest values of gross income, net benefit and the percentage of benefit/cost ratio.

Keywords: Onion; density; Goal; Select super and Ecopart.

INTRODUCTION

Onion is one of the most important commercial vegetable crops grown all over the world. Also, it is one of the most important field and vegetable crops for both local or export market in Egypt (Ghalwash et al. 2008). In Egypt, onion production was approximately 2.96 million tons produced from the harvested area of 81 517 ha, in 2018 (FAOSTAT,2020). Egyptian onion are characterized by high specifications that make it occupy an advanced position globally, where it is characterized by the early availability of crop for foreign markets as well as its higher quality compared to other onions due to its high pungency and long shelf-storage period. The Egyptian onions exports in 2018 reached 526 000 tons (Agricultural Export council-Egypt).

Plant spacing is a vulnerable way of controlling bulb size, shape and yield in onion. Higher yield and better control over bulb size could be obtained if plants are grown at optimum density (Jilani et al., 2009). It is important to adjust onion plants density in order to optimize light interception, photosynthesis and dry matter accumulation to onion bulbs. In addition, optimum density must be permit for the onion plants to use all growth factors in efficient way. Spacing affects the plant growth, size of bulb, yield as well as the quality of the produce (Purewal and Dargan, 1962; Badaruddin and Haque, 1977; and Rahim et al. 1983). The control of plant spacing is one of the cultural practices to control bulb size, shape and yield (Awas et al., 2010). The higher yield and better control of over or under bulb size could be obtained if plants are grown at optimum density. Bulb neck diameter, mean bulb weight and plant height decreased as population density increased (Kahsay et al., 2013). Optimum plant population is one of the important factors for optimum utilization of solar energy and soil nutrients to increase the yield per hectare of onion crop, where only single underground bulb is produced per plant (Ali et al., 2020).

Crop weed competition has long been recognized as one of major constraints for low production in onion. Weeds cause reduction in bulb yield to an extent of 40-80 per cent (Patel et al., 1983). Weeds are one of the main plant protection problems in onion fields. Due to their slow growth, small stature, shallow roots, and lack of dense foliage, onions cannot withstand the ill effects of weeds (Ware and McCollum, 1975). Research has documented that onions are poor competitors (Jones and Mann, 1963). Many researchers have reported that onion plants are poor competitors (Ghosheh, 2004; Carlson and Kirby, 2005). In addition to this, frequent irrigation water and fertilizer application allows for successive flushes of weeds in onion (Kalhapure et al. 2013). Weed compete with onion for light, nutrient, water, space and also act as host plant of several harmful insects and pathogens and considerably reduce the yield, quality and value of the crop through increased production and harvesting costs (Uygur et al., 2010). Weeds in onion are a global problem and loss due to weeds was as high as 70-75% (Mani and Gautam, 1976).
Triticum aestivum L.

Pyralufem-ethyl was a potent protoporphyrinogen IX oxidase (Protox, EC 1.3.3.4) inhibitor and its selective effect on wheat (Triticum aestivum L) and cleavers was due to differences of foliar deposition and absorption, and the rate of metabolic detoxification (Murata et al., 2002). Clethodim is registered in cotton, peanut (Arachis hypogaea L.), soybean, and various other broadleaf crops (Anonymous 2005). Clethodim is generally applied with an adjuvant, crop oil concentrate (COC), alone or in combination with a nitrogen source (e.g., ammonium sulfate [AMS]), for maximum efficacy (Anonymous 2005). Weedy plots resulted in the lowest marketable onion yield (Vanhal and Tilikkala 1999). Weed crop competition caused 71% and 76% reduction in the marketable bulb yield during the first and second year (Khokhar, 2006), respectively. Weed management is one of the most important agricultural production practices. A number of weed management practices have been reported, including use of cultural, mechanical, herbicidal and the use of organic and inorganic mulches (Pushpa and Choudhary, 2019). Several herbicides used as early post-emergence treatments for annual weed control in onions must be applied only at certain stages of growth to avoid injury to the crop (Ashton and Monaco, 1991). Oxyfluorfen, pendimethalin and metribuzin significantly reduced the weed population and increased onion yield to levels comparable to yields of weeded control in a relay cabbage-onion cropping system (Sanjeev et al., 2003). Cultivation and hand-weeding are physical weed control methods in onion. However, because of an easily damaged, shallow root system, the potential injury to onion by cultivation may outweigh the benefit for overall yield (Melander and Hartvig 1997). Also only application of weedicide does not give the effective weed control. (Panse et al., 2014). The use of selective herbicides together with mechanical methods for weed control in onion has been recommended (Rappapini, 1994).

MATERIALS AND METHODS

This investigation was conducted at the Experimental Farm of Shandawel Agricultural Research Station, Agricultural Research Center (ARC), during the two winter seasons of 2015/2016 and 2016/2017 to study the effect of row spacing and weed control treatments on vegetative growth, yield and quality of onion (Allium cepa, L.). The preceding summer crop was maize (Zea maize L.) in both seasons.

The soil of the experiment area was clay loam in texture. The mechanical and chemical analyses for the soil of the experimental sites (Table 1) were done according to the procedures described by Piper (1950) and Jackson (1967) at the Soil and Water Lab. of Agricultural Research Center (ARC).

Table 1. Mechanical and chemical analysis of the experimental site soil at the depth of 30 cm in 2015/2016 and 2016/2017 seasons.

<table>
<thead>
<tr>
<th>Season</th>
<th>Soil pH</th>
<th>Sand</th>
<th>Silt</th>
<th>Clay</th>
<th>Texture classes</th>
<th>Organ. matter</th>
<th>N</th>
<th>P</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015/16</td>
<td>7.8</td>
<td>29.07</td>
<td>40.53</td>
<td>30.40</td>
<td>Clay loam</td>
<td>1.53</td>
<td>18.2</td>
<td>9.6</td>
<td>273</td>
</tr>
<tr>
<td>2016/17</td>
<td>7.7</td>
<td>26.94</td>
<td>41.00</td>
<td>32.06</td>
<td>Clay loam</td>
<td>1.60</td>
<td>20.0</td>
<td>9.0</td>
<td>257</td>
</tr>
</tbody>
</table>

The seeds in this experiment were sown in the nursery on 20 and 25 August in the first and second seasons respectively. Nursery bed was prepared and planted with onion seeds cv. Giza 6 mohassan, while transplanting took place on 25 October in both seasons of the experiment. All the cultural operations for nursery were carried out as recommended. The experimental plot size was 10.5 m² (3.5 m length and 3 m in width), planting rows were 15, 20 or 25 cm in width, and 3.5 m in length. The distance between onion plants at the same row was 7 cm. During soil preparation, all phosphorus requirement fertilizer was added at the rate of 60 P₂O₅ kg fed.¹ mixed with potassium sulphate (48%) requirement at the rate of 50 K₂O unites fed.¹. The nitrogen fertilizer at rate of 120 kg fed.¹ as ammonium nitrate (33.5%) was side dressed at two equal doses, at 30 and 60 days from transplanting. The experimental design was a split-plot design with three replications. The main plots were randomly assigned with the three spacing, whereas weed control treatments were randomly distributed in sub plots. All the cultural operations like nursery raising, main field preparation, transplanting, fertilization, irrigation; weeding, plant protection etc. were carried out as recommended. Herbicides were sprayed by CP3 knapsack sprayers with 200 litter of water/fed. Trade, common and chemical names of the used herbicides were presented in Table 2. The investigation includes the following treatments:

- **Main plots: Plant density:**
 1. 240 000 plant/fed. (25 cm between rows and 7 cm between plants).
 2. 300 000 plant/ fed. (20 cm between rows and 7 cm between plants).
 3. 400 000 plant/ fed. (15 cm between rows and 7 cm between plants).

- **Sub plots: weed control treatments:**
 1. Hand hoeing twice after 30 and 45 days from transplanting.
 2. Goal 24% EC at rate of 750 cm³/fed. after 21 days from transplanting + Select super 12.5% EC at rate of 500 cm³/fed. after 25 days from transplanting (once).
 3. Goal 24% EC at rate of 750 cm³/fed. after 21 and 40 days from transplanting + Select super 12.5% EC at rate of 500 cm³/fed. after 25 and 45 days from transplanting (twice).
 4. Ecopart 2% SC at rate of 200 cm³/fed. after 21 days from transplanting + Select super 12.5% EC at rate of 500 cm³/fed. after 25 days from transplanting (once).
 5. Ecopart 2% SC at rate of 200 cm³/fed. after 21 and 40 days from transplanting + Select super 12.5% EC at rate of 500 cm³/fed. after 25 and 45 days from transplanting (twice).
 6. Control (Un-weeded).
Table 2. Trade, common and chemical names of the used herbicides:

<table>
<thead>
<tr>
<th>Trade name</th>
<th>Common name</th>
<th>Chemical name</th>
<th>Mode of action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal 24% EC</td>
<td>Oxyfluorfen</td>
<td>2-Chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl) benzene.</td>
<td>Cell membranes disrupters</td>
</tr>
<tr>
<td>Select super 12.5% EC</td>
<td>Cledthom</td>
<td>2-[(E)-1-[(E)-3-chloroallyloximinopropyl]-5-[2-(ethylthio)propyl]-3-hydroxycyclohex-2-ene</td>
<td>Lipid synthesis inhibitors</td>
</tr>
<tr>
<td>Ecopart 2% SC</td>
<td>Pyraflufen ethyl</td>
<td>ethyl 2-[(2-chloro-5-(4-chloro-5-(difluoromethoxy))-1-methylpyrazol-3-yl]-4-fluorophenoxylacetate</td>
<td>Cell membranes disrupters</td>
</tr>
</tbody>
</table>

Data recorded:

1- Weeds:
Weed were hand pulled from square meter randomly of each plot after 75 days after sowing, then identified into species and classified into the following two groups and total annual weeds:
2. Annual broad-leaved weeds: lampsquarters (Chenopodium album L.), spiny emex (Eremosporus L.), sheep sorrel (Rumex dentatus L.), common bishop (Ammi majus L.), kabar mustard (Brassica nigra L.), annual sowthistle (Sonchus oleraceus L.), sweet clover (Melilotus indica L.) and toothed medik (Medicago polymorpha L.).
3. Total weight of annual weeds: combined of grassy weeds and broad-leaved weeds.

Weeds were air dried for 3 days and dried on oven at 70°C until constant weight and weighed. After that, the dry weight of weeds was recorded in g/m².

2- Vegetative growth:
After 120 days from transplanting, 10 randomly selected plants were taken from each plot to measure plant height (cm), number of leaves/plant, fresh bulb weight (g), bulb diameter (cm), neck diameter (cm) and bulbing ratio. Bulbing ratio = neck diameter (cm)/bulb diameter (cm), according to Mann (1952).

3- Bulb yield and its components:
At harvest time, all plants in the experimental plot were uprooted and the following data were recorded:
a. Average bulb weight (g): It was calculated by dividing weight of single bulbs by its number.
b. Marketable yield (ton/fed): It was determined as the weight of single bulb yield for each experimental plot.
c. Culls yield (ton/fed): It includes bulbs of less than 3 cm diameter, doubles, bolters, off-color and scallions.
d. Total yield (ton/fed): It was calculated on basis of yield for the experimental plot in tons/fed.

4- Onion bulb quality:
After harvest, the following characteristics were determined:
a. Single bulbs (%): It was estimated by dividing number of single bulbs by the total number of bulbs x 100 for each experimental plot.
b. Double bulbs (%): It was estimated by dividing number of double bulbs by the total number of bulbs x 100 for each experimental plot.
c. Bolters (%): It was estimated by dividing number of boller bulbs by the total number of bulbs x 100 for each experimental plot.
d. Small bulbs (%): It was estimated by dividing number of single bulbs (smaller than 3 cm in diameter) by the total number of bulbs x 100 for each experimental plot.

RESULTS AND DISCUSSION

1- Weeds:
The results in Table 3 indicated that the dry weight of grassy, broad-leaved and total weeds/m² were significantly decreased by increasing onion density in both seasons. It was found that moderate onion density (300 000 plants/fed.) decreased dry weight of grassy (g/m²) by 12.82 and 17.12%, decreased dry weight of broad leaved (g/m²) by 8.16 and 9.24; and decreased dry weight of total weeds (g/m²) by 10.14 and 12.80%; as compared to low onion density (240 000 plant/fed.) in the first and second seasons, respectively. While, high onion density (400 000 plant/fed.) decreased dry weight of grassy leaved/m² by 23.52 and 20.14%, decreased dry weight of broad leaves (g/m²) by 17.22 and 16.23%; and decreased dry weight of total weeds (g/m²) by 19.89% and 17.10; as compared to low onion density (240 000 plant/fed.); in the first and second seasons, respectively.

Results in Table 3 revealed to a significant differences in dry weight of grassy, broad-leaved and total weeds/m² due to weed control treatments. Application of Hand hoeing twice, Goal + Select (once), Goal + Select (twice), Ecopart + Select (once) and Ecopart + Select (twice) decreased dry weight of grassy seed/m² by
Marey, R. A. et al.

84.56, 66.64, 88.93, 54.95 and 68.71%; dry weight of broad leaved weeds/m² by 90.39, 83.88, 92.76, 81.12 and 87.11%; and dry weight of total weeds/m² by 88.46, 78.18, 91.49, 72.47 and 81.03% in the first season, respectively as compared to un-weeded check treatment. In the second season, the application of Hand hoeing (twice), Goal + Select (once), Goal + Select (twice), Ecopart + Select (once) and Ecopart + Select (twice) decreased dry weight of grassy leaved weeds/m² by 87.79, 63.80, 88.05, 57.52 and 69.9%; dry weight of broad leaved weeds/m² by 86.80, 80.93, 88.02, 77.75 and 84.76%; and dry weight of total weeds/m² by 87.18, 74.41, 88.03, 70.04 and 79.10%, respectively as compared to un-weeded check treatment. These results deducted that the using of the above five control treatments were good measures for controlling weeds during early growth period of onion crop. These treatments were efficiency in control of weeds. These results are in harmony with those obtained by several researchers, such as Uygur et al. (2010), Ramalingam et al. (2013) and Panse et al. (2014).

Table 3. Response of dry weeds weight in onion crop to plant density and weed control treatments during 2015/2016 and 2016/2017 seasons.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>2015/2016</th>
<th>2016/2017</th>
<th>L.S.D at 5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant density (A):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>240 000 plant/fed</td>
<td>194.68</td>
<td>264.22</td>
<td>458.91</td>
</tr>
<tr>
<td>300 000 plant/fed</td>
<td>169.72</td>
<td>242.67</td>
<td>412.39</td>
</tr>
<tr>
<td>400 000 plant/fed</td>
<td>148.89</td>
<td>218.72</td>
<td>367.61</td>
</tr>
<tr>
<td>L.S.D at 5%</td>
<td>8.59</td>
<td>11.35</td>
<td>10.88</td>
</tr>
<tr>
<td>Weed control treatments (B):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hand hoeing (twice)</td>
<td>67.09</td>
<td>84.67</td>
<td>151.76</td>
</tr>
<tr>
<td>Goal + Select (once)</td>
<td>145.00</td>
<td>142.00</td>
<td>287.00</td>
</tr>
<tr>
<td>Goal + Select (twice)</td>
<td>48.11</td>
<td>63.78</td>
<td>111.89</td>
</tr>
<tr>
<td>Ecopart + Select (once)</td>
<td>195.78</td>
<td>166.33</td>
<td>362.11</td>
</tr>
<tr>
<td>Ecopart + Select (twice)</td>
<td>136.00</td>
<td>113.56</td>
<td>249.56</td>
</tr>
<tr>
<td>Control</td>
<td>434.61</td>
<td>880.89</td>
<td>1315.50</td>
</tr>
<tr>
<td>L.S.D at 5%</td>
<td>24.78</td>
<td>24.14</td>
<td>38.72</td>
</tr>
<tr>
<td>Interaction (A x B):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hand hoeing (twice)</td>
<td>69.60</td>
<td>88.67</td>
<td>158.27</td>
</tr>
<tr>
<td>Goal + Select (once)</td>
<td>162.00</td>
<td>156.33</td>
<td>318.33</td>
</tr>
<tr>
<td>Goal + Select (twice)</td>
<td>69.33</td>
<td>72.67</td>
<td>142.00</td>
</tr>
<tr>
<td>Ecopart + Select (once)</td>
<td>217.33</td>
<td>182.00</td>
<td>399.33</td>
</tr>
<tr>
<td>Ecopart + Select (twice)</td>
<td>150.00</td>
<td>125.33</td>
<td>275.33</td>
</tr>
<tr>
<td>Control</td>
<td>499.83</td>
<td>960.33</td>
<td>1460.17</td>
</tr>
<tr>
<td>L.S.D at 5%</td>
<td>24.78</td>
<td>24.14</td>
<td>38.72</td>
</tr>
</tbody>
</table>

Dry weight of grassy, broad-leaved and total weeds/m² were significantly affected by this interaction between plant density and weed control treatments in both seasons. The highest values of dry weight of grassy leaved/m² (499.83 and 564.67 g), dry weight of broad leaved/m² (960.33 and 919.67g) and dry weight of total weeds/m² (1460.17 and 1448.33 g) were obtained by planting onion at low density (240 000 plant/fed) under control treatments, in the first and second seasons, respectively. While, The lowest values of dry weight of grassy leaved/m² (24.67 and 33.00g), dry weight of broad leaved/m² (56.00 and 92.33 g) and dry weight of total weeds/m² (80.67 and 125.33 g) were obtained by planting onion at high density (400 000 plant/fed) when using Goal + Select (twice) treatment, in the first and second seasons, respectively.

B- Vegetative growth:

Results in table 4 revealed that plant height, number of leaves/plant and fresh bulb weight were significantly affected by plant density in both seasons, except for bulb weight in the second season. It was noticed that onion plants grown under the highest density (400 000 plants/fed.) attained the highest values of plant height and number of leaves/plant, while the lowest density (240 000 plants/fed.) attained the lowest values, in both seasons. The tallest onion plants under high density might be due to the more competition between onion plants for light which caused an increase in elongation of plants. These results
was in agreement with that found by Harun-or-Rashid (1998), who obtained taller plant from closer spacing.

Fresh bulb weight appeared adverse trend under plant density effect, as the lowest density appeared the highest values, while the highest density appeared the lowest ones. The high values of bulb weight under low density were probably due to less interplant competition for water, nutrients and light. These results are in agreement with the results of Rashid and Rashid (1976), Kumar et al. (1998), Khushk et al. (1990); Rizk et al. (1991), Sikder et al. (2010) and Geries, L. S. M. and Azza E. Khaffagy (2018).

These results also showed that plant height, number of leaves per plant and bulb weight was significantly affected by weed control treatments in both seasons.

Control treatment gave the highest values of plant height in both seasons, while application of Ecopart + Select (once) and Ecopart + Select (twice) gave the lowest values in the first and second seasons respectively. The highest values of number of leaves/plant were obtained by application of Goal + Select (twice), in both seasons. Application of Goal + Select (twice) gave also the highest values of bulb weight, followed by hand hoeing (twice), with no significance differences between them. Control treatment appeared the lowest values of number of leaves/plant and bulb weight, in both seasons. These results were in line with that revealed by Jilani et al. (2007) who recorded that different weed management practices had profound effect on the weight of bulbs.

Table 4. Response of plant height, No of leaves/plant and bulb weight of onion to plant density and weed control treatments during 2015/2016 and 2016/2017 seasons.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>2015/2016</th>
<th>2016/2017</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Plant height (cm)</td>
<td>Fresh Bulb weight (g)</td>
</tr>
<tr>
<td>Plant density (A):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>240 000 plant/ fed.</td>
<td>65.56</td>
<td>86.90</td>
</tr>
<tr>
<td>300 000 plant/ fed.</td>
<td>68.47</td>
<td>66.86</td>
</tr>
<tr>
<td>400 000 plant/ fed.</td>
<td>70.86</td>
<td>63.39</td>
</tr>
<tr>
<td>LSD at 5%:</td>
<td>3.85</td>
<td>3.45</td>
</tr>
<tr>
<td>Weed control treatments (B):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hand hoeing (twice)</td>
<td>72.78</td>
<td>78.90</td>
</tr>
<tr>
<td>Goal + Select (once)</td>
<td>70.56</td>
<td>70.56</td>
</tr>
<tr>
<td>Goal + Select (twice)</td>
<td>65.89</td>
<td>79.78</td>
</tr>
<tr>
<td>Ecopart + Select (once)</td>
<td>57.78</td>
<td>57.83</td>
</tr>
<tr>
<td>Ecopart + Select (twice)</td>
<td>66.95</td>
<td>73.78</td>
</tr>
<tr>
<td>Control</td>
<td>75.83</td>
<td>37.44</td>
</tr>
<tr>
<td>LSD at 5%:</td>
<td>3.36</td>
<td>3.14</td>
</tr>
<tr>
<td>Interaction (A x B):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>240,000 plant/ fed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hand hoeing (twice)</td>
<td>66.67</td>
<td>84.04</td>
</tr>
<tr>
<td>Goal + Select (once)</td>
<td>69.17</td>
<td>75.67</td>
</tr>
<tr>
<td>Goal + Select (twice)</td>
<td>60.00</td>
<td>82.67</td>
</tr>
<tr>
<td>Ecopart + Select (once)</td>
<td>59.17</td>
<td>61.33</td>
</tr>
<tr>
<td>Ecopart + Select (twice)</td>
<td>61.67</td>
<td>77.67</td>
</tr>
<tr>
<td>Control</td>
<td>76.67</td>
<td>32.00</td>
</tr>
<tr>
<td>300,000 plant/ fed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hand hoeing (twice)</td>
<td>74.17</td>
<td>76.33</td>
</tr>
<tr>
<td>Goal + Select (once)</td>
<td>70.83</td>
<td>70.33</td>
</tr>
<tr>
<td>Goal + Select (twice)</td>
<td>73.33</td>
<td>81.33</td>
</tr>
<tr>
<td>Ecopart + Select (once)</td>
<td>54.17</td>
<td>53.50</td>
</tr>
<tr>
<td>Ecopart + Select (twice)</td>
<td>68.33</td>
<td>75.00</td>
</tr>
<tr>
<td>Control</td>
<td>70.00</td>
<td>44.67</td>
</tr>
<tr>
<td>400,000 plant/ fed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hand hoeing (twice)</td>
<td>77.50</td>
<td>76.33</td>
</tr>
<tr>
<td>Goal + Select (once)</td>
<td>71.67</td>
<td>65.67</td>
</tr>
<tr>
<td>Goal + Select (twice)</td>
<td>64.33</td>
<td>75.33</td>
</tr>
<tr>
<td>Ecopart + Select (once)</td>
<td>60.00</td>
<td>58.67</td>
</tr>
<tr>
<td>Ecopart + Select (twice)</td>
<td>70.83</td>
<td>68.67</td>
</tr>
<tr>
<td>Control</td>
<td>80.83</td>
<td>35.67</td>
</tr>
<tr>
<td>LSD at 5%:</td>
<td>5.81</td>
<td>5.44</td>
</tr>
</tbody>
</table>

Plant height, number of leaves per plant and fresh bulb weight were significantly affected by the interaction between onion density and weed control treatments, in both seasons (Table 4). The tallest plants were recorded with the highest onion density (400 000 plant/fed.) or moderate onion density (300 000 plant/fed.) under control treatments, in the first and second seasons, respectively; while, the shortest plants were recorded with moderate density when applied with Ecopart + Select (once) or Ecopart + Select (twice), in the first and second seasons, respectively. The highest values of No of leaves/plant were reported under moderate density when applied with Ecopart + Select (twice), and with highest density when applied with Ecopart + Select (once), in the first and second seasons, respectively; whilst, the lowest values were reported with low onion density when applied with Ecopart + Select (twice), in both seasons. The combination between low density (240 000 plant/fed.) and hand weeding (twice) gave the maximum values of bulb weight, while the combination between low density and control treatment gave the lowest values. These results were true in both seasons.
Data in Table 5 revealed that onion density had a significant effect on neck diameter and bulbing ratio in the second season only, and on bulb diameter in both seasons. Planting onion at low density (240 000 plant/fed.) appeared the highest values of neck diameter, bulb diameter and bulbing ratio, while planting at high density (400 000 plant/fed.) appeared the lowest values. These results were true in both seasons.

Table 5. Response of neck and bulb diameter, and bulbing ratio of onion to plant density and weed control treatments during 2015/2016 and 2016/2017 seasons.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>2015/2016</th>
<th>2016/2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant density (A):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>240 000 plant/ fed.</td>
<td>1.95</td>
<td>5.79</td>
</tr>
<tr>
<td>300 000 plant/ fed.</td>
<td>1.83</td>
<td>5.43</td>
</tr>
<tr>
<td>400 000 plant/ fed.</td>
<td>1.65</td>
<td>5.13</td>
</tr>
<tr>
<td>L.S.D at 5%:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weed control treatments (B):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hand hoeing (twice)</td>
<td>3.09</td>
<td>5.98</td>
</tr>
<tr>
<td>Goal + Select (once)</td>
<td>1.47</td>
<td>5.29</td>
</tr>
<tr>
<td>Goal + Select (twice)</td>
<td>1.81</td>
<td>5.65</td>
</tr>
<tr>
<td>Ecopart + Select (once)</td>
<td>1.49</td>
<td>5.65</td>
</tr>
<tr>
<td>Ecopart + Select (twice)</td>
<td>1.53</td>
<td>5.85</td>
</tr>
<tr>
<td>Control</td>
<td>1.49</td>
<td>3.10</td>
</tr>
<tr>
<td>L.S.D at 5%:</td>
<td>0.37</td>
<td>0.24</td>
</tr>
<tr>
<td>Interaction (A x B):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>240 000 plant/ fed.</td>
<td>3.43</td>
<td>6.42</td>
</tr>
<tr>
<td>300 000 plant/ fed.</td>
<td>1.83</td>
<td>5.88</td>
</tr>
<tr>
<td>400 000 plant/ fed.</td>
<td>1.95</td>
<td>7.18</td>
</tr>
<tr>
<td>L.S.D at 5%:</td>
<td>1.30</td>
<td>5.73</td>
</tr>
<tr>
<td>240 000 plant/ fed.</td>
<td>0.94</td>
<td>5.72</td>
</tr>
<tr>
<td>300 000 plant/ fed.</td>
<td>2.27</td>
<td>3.80</td>
</tr>
<tr>
<td>400 000 plant/ fed.</td>
<td>2.73</td>
<td>6.07</td>
</tr>
<tr>
<td>L.S.D at 5%:</td>
<td>1.15</td>
<td>5.37</td>
</tr>
<tr>
<td>240 000 plant/ fed.</td>
<td>1.78</td>
<td>6.65</td>
</tr>
<tr>
<td>300 000 plant/ fed.</td>
<td>1.53</td>
<td>6.10</td>
</tr>
<tr>
<td>400 000 plant/ fed.</td>
<td>2.48</td>
<td>5.97</td>
</tr>
<tr>
<td>L.S.D at 5%:</td>
<td>1.28</td>
<td>2.43</td>
</tr>
<tr>
<td>240 000 plant/ fed.</td>
<td>3.10</td>
<td>5.47</td>
</tr>
<tr>
<td>300 000 plant/ fed.</td>
<td>1.42</td>
<td>4.63</td>
</tr>
<tr>
<td>400 000 plant/ fed.</td>
<td>1.68</td>
<td>6.62</td>
</tr>
<tr>
<td>L.S.D at 5%:</td>
<td>1.65</td>
<td>5.13</td>
</tr>
<tr>
<td>240 000 plant/ fed.</td>
<td>1.15</td>
<td>5.87</td>
</tr>
<tr>
<td>300 000 plant/ fed.</td>
<td>0.92</td>
<td>3.07</td>
</tr>
<tr>
<td>L.S.D at 5%:</td>
<td>0.63</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Weed control treatments significantly differentiated bulb diameter and bulbing ratio in both seasons, and neck diameter in the first season only. Hand weeding (twice) attained the greatest values of neck diameter in the first season and bulb diameter in both seasons, while control treatment attained the greatest values of bulbing ratio in both seasons and neck diameter in the second season. These results were in agreement with that found by Hussain et al. (2008) who indicated that bulb size was the largest in the hand weeded plots followed by pendimethalin, while minimum bulb size was observed in the weedy check plots.

Neck diameter, bulb diameter and bulbing ratio were significantly affected by the interaction between the plant density and weed control treatments in both seasons. The highest combination in respect to neck diameter was obtained with low onion density (240 000 plant/fed.) under hand weeding (twice) or control treatments, whilst the lowest combination was obtained with high onion density (400 000 plant/fed.) under control or Ecopart + Select (once) treatments, in the first and second seasons, respectively. The highest interaction for bulb diameter were obtained with low onion density under Ecopart + Select (twice) or hand weeding (twice), in the first and second seasons, respectively; while the lowest interaction were obtained with moderate onion density (300 000 plant/fed) under control treatment, in both seasons. The highest values of bulbing ratio were obtained by the combination between high onion density and control or hand weeding (twice) treatments, in the first and second seasons, respectively. While the lowest values of bulbing ratio were obtained by the combination between high onion density and Ecopart + Select (twice) in the first season; and by the combination between moderate onion density and control treatments, in the second season (Table 5).

4- Bulb yield and its components:

Data presented in Table 6 indicate that plant density significantly differentiated average bulb weight, marketable yield/fed., culls yield/fed., and total yield/fed., in both seasons. Average bulb weight was increased by decreasing the plant density. The lowest plant density (240 000 plant/fed.) resulted in an increase in average bulb weight by 6.62 and 14.09% in the first season; and by 10.39 and 18.71% in the second season over the other densities of 300 000 and 400 000 plant/fed., respectively.
This results was in coincide with that found by Kantona et al. (2003) who reported a decrease in bulb weight as the plant population per square meter increased from 50 to 200 plants likely due to competition associated with closely spaced plants that resulted in lower bulb weight per plan. Khays et al. (2013) and Gerlies, L. S. M. and Azza E. Khaffagy(2018) also reported that average bulb weight increased with increasing intra row spacing.

Marketable yield/fed. for onion grown under moderate density (300 000 plant/fed.) were higher than those under other densities by 10.49 and 0.53% in the first season, and by 12.33 and 4.13% in the second season, over the densities of 240 000 and 400 000 plant/fed., respectively. The moderate plant density (300 000 plant/fed.) resulted in a decrease in culls yield/fed by 11.70 and 41.50% in the first season; and by 43.35 and 54.90% in the second season over the other densities of 240 000 and 400 000 plant/fed., respectively. Total yield/fed. for onion grown under high density (400 000 plant/fed.) were higher than those under other densities by 17.33 and 10.26% in the first season, and by 12.45 and 15.05% in the second season, over the densities of 240 000 and 300 000 plant/fed., respectively. Increasing total yields/fed under high density was confirmed by many researcher. Karsanbhai (2003) and Misra et al. (2016) showed high yield at less spacing (10x10 cm). Kumar et al. (2018) demonstrated that fresh bulb yield was maximum in T1S2 (10x10 cm) might be due to more number of bulb produced per unit area. Plants also have used maximum nutrients for production of more number of bulbs.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>2015/2016</th>
<th>2016/2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant density (A):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>240 000 plant/fed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300 000 plant/fed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>400 000 plant/fed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.S.D at 5%:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weed control treatments (B):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hand hoeing (twice)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goal + Select (once)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goal + Select (twice)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EcoPart + Select (once)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EcoPart + Select (twice)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.S.D at 5%:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interaction (A x B):</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As shown in Table 6, average bulb weight, marketable yield/fed., culls yield/fed. and total yield/fed. were significantly affected by the used weed control treatments, in both seasons. Application of Hand weeding twice, Goal + Select (once), Goal + Select (twice), EcoPart + Select (once) and EcoPart + Select (twice) increased average bulb weight by 75.75, 65.42, 84.28, 63.25 and 63.40%; marketable yield/fed by 245.87, 214.57, 259.13, 163.70 and 189.57%; culls yield/fed by 53.27, 23.12, 29.65, 63.32 and 134.17%; and total yield/fed. by 187.71, 156.75, 189.83, 133.38 and 172.84% in the first season, respectively as compared to control treatment. In second season, the application of Hand weeding twice, Goal + Select (once), Goal + Select (twice), EcoPart + Select (once) and EcoPart + Select (twice) increased average bulb weight by 127.86, 102.40, 127.25, 108.02 and 96.92%; marketable yield/fed by 188.14, 175.87, 220.04, 149.08 and 165.03%; culls yield/fed. by 166.14, 37.04, 100.53, 85.71 and 223.28%; and total yield/fed. by 182.27, 137.52, 187.15, 131.76 and 181.68, respectively as compared to control treatment. The increases in average bulb weight, marketable yield/fed., culls yield/fed. and total yield/fed.
under different weed control treatments mainly due to effectiveness of these treatments on reducing weed density in onion, which ultimately increased the nutrient availability for the crop, similar conclusion was obtained by Marwat et al. (2003). Many researcher revealed to the important of weed control treatments on increasing onion yield. Kalhapure (2013) revealed that weed management with three hand weedicings (HW) at 20, 40 and 60 DAT recorded significantly maximum in all yield attributes of onion. Hussain et al. (2008) revealed that the maximum onion yield was recorded in the hand weeded plots followed by pendimethalin as compared to weedy check. Uygur et al. (2010) found that weed-free check caused 76.3% increase in the onion yield when compared with weedy checks.

Average bulb weight, marketable yield/fed., culls yield/fed. and total yield/fed. were significantly affected by the interaction between the two studied factors in both seasons (Table 6). The maximum values of average bulb weight were observed by the combination between plant density of 240 000 plant/fed. and application of Goal + Select (once) or Goal + Select (twice), in the first and second seasons, respectively; while the lowest values were observed when onion planted at density of 300 000 or 400 0000 plant/fed. under control treatment, in the first season and second seasons, respectively. The highest values of marketable yield were observed when onion was planted under density of 300 000 or 400 0000 plant/fed. and applied with Goal + Select (twice), in the first and second seasons, respectively; while the lowest values were obtained by planting onion at density of 400 000 plant/fed. under control treatments. The lowest values of culls yield/fed. was observed by the combinations between density of 240 000 plant/fed. and treatment of Goal + Select (twice), and between density of 300 000 plant/fed. and treatment of Goal + Select (once), in the first and second seasons, respectively; while the highest values were observed by planting onion at density of 240 000 or 300 000 plant/fed. and application of Ecopart + Select (twice), in the first and second seasons, respectively. The highest values of total yield/fed. were obtained under density of 400 000 plant/fed. when applied with Goal + Select (twice), in both seasons; while, the lowest values were obtained by planting onion at density of 240 000 or 300 000 plant/fed. under control treatments.

D- Onion bulb quality:

Data presented in Table 7 revealed that plant density of onion had a significant effect on single bulbs% and double bulbs%, in both seasons. While, the differences between means of bolters% did not reach the level of significance, in both seasons. Planting onion at low density (240 000 plant/fed.) recorded the highest values of single bulbs, and double bulbs%, while planting at high density (400 000 plant/fed.) recorded the lowest values, in both seasons.

Table 7. Response of single bulbs%, double bulbs and bolters% of onion to plant density and weed control treatments during 2015/2016 and 2016/2017 seasons.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>2015/2016</th>
<th>2016/2017</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Single bulbs %</td>
<td>Double bulbs %</td>
</tr>
<tr>
<td>Plant density (A):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>240 000 plant/fed.</td>
<td>83.96</td>
<td>1.79</td>
</tr>
<tr>
<td>300 000 plant/fed.</td>
<td>83.51</td>
<td>1.39</td>
</tr>
<tr>
<td>400 000 plant/fed.</td>
<td>82.71</td>
<td>1.16</td>
</tr>
<tr>
<td>L.S.D at 5%:</td>
<td>0.44</td>
<td>0.35</td>
</tr>
<tr>
<td>Weed control treatments (B):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hand hoeing (twice)</td>
<td>86.43</td>
<td>1.87</td>
</tr>
<tr>
<td>Goal + Select (once)</td>
<td>88.61</td>
<td>1.23</td>
</tr>
<tr>
<td>Goal + Select (twice)</td>
<td>88.78</td>
<td>1.90</td>
</tr>
<tr>
<td>Ecopart + Select (once)</td>
<td>86.68</td>
<td>1.06</td>
</tr>
<tr>
<td>Ecopart + Select (twice)</td>
<td>86.11</td>
<td>1.02</td>
</tr>
<tr>
<td>Control</td>
<td>63.75</td>
<td>1.60</td>
</tr>
<tr>
<td>L.S.D at 5%:</td>
<td>1.33</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Interaction (A x B):

240 000 plant/fed.						
Hand hoeing (twice)	91.08	2.36	0.68	91.80	3.38	1.79
Goal + Select (once)	91.01	2.72	0.74	76.00	2.25	0.46
Goal + Select (twice)	89.81	2.32	0.70	88.73	0.30	0.39
Ecopart + Select (once)	86.70	1.11	1.01	71.45	4.03	0.73
Ecopart + Select (twice)	81.67	0.99	0.50	74.23	4.12	0.59
Control	63.48	1.25	0.81	60.37	2.12	2.26
300 000 plant/fed.						
Hand hoeing (twice)	81.59	1.81	0.82	86.08	1.73	0.79
Goal + Select (once)	86.43	0.60	0.80	68.22	2.03	1.05
Goal + Select (twice)	89.61	2.20	0.57	94.94	2.25	0.71
Ecopart + Select (once)	87.83	0.92	0.82	68.52	0.68	1.11
Ecopart + Select (twice)	88.67	0.61	0.78	70.28	0.86	1.10
Control	66.93	2.22	1.11	64.61	1.63	1.22
400 000 plant/fed.						
Hand hoeing (twice)	86.61	1.44	0.63	78.36	0.77	0.56
Goal + Select (once)	88.39	0.37	0.76	90.79	3.82	0.73
Goal + Select (twice)	86.93	1.18	0.60	80.60	1.55	0.82
Ecopart + Select (once)	85.52	1.15	0.67	64.95	0.73	0.85
Ecopart + Select (twice)	87.99	1.47	0.89	67.60	0.77	0.77
Control	60.83	1.34	1.60	57.15	1.12	1.66

L.S.D at 5%: 2.30 0.86 N.S 4.18 0.72 0.63
Data also revealed to a significant difference in single bulbs%, double bulbs% and bolters% due to weed control treatments, in both seasons. Application of Goal + Select (twice) appeared the highest values of single bulbs in both seasons, and double bulbs in the first season, while application of Goal + Select (once) appeared the highest values of double bulbs in the second season. Control treatment appeared the highest values of bolters%, and the lowest values of single bulbs%, in both seasons. Goal + Select (once) treatment appeared the lowest values of bolters% in both seasons, and double bulbs% in the second season.

The highest combination for single bulbs% were obtained under low onion density when applied with hand weeding, in both seasons. The highest combination for double bulbs were obtained under low onion density, when applied with Goal + Select (once), or hand weeding (twice), in the first and second seasons, respectively. The combination between onion low density and control treatment appeared the lowest values of bolters% in the second season. The combination between high onion density and control treatment appeared the lowest values of single bulbs in both seasons, while, the combination between low onion density and Goal + Select (twice) treatment appeared the lowest values of double bulbs% and bolters%, in the second seasons.

Data as shown in Table 8 indicated that small bulbs%, bulb diameter and TSS% were significantly affected by onion density in both seasons. It was noticed that onion plants grown under high density recorded the highest values of small bulbs% in both seasons, while those grown under low density recorded the highest values of bulb diameter and TSS%, in both seasons. The lowest values of small bulbs% were recorded under low onion density, while, the lowest values of bulb diameter and TSS% were recorded under high onion density, in both seasons. These results were confirmed with that reported by Dawar et al. (2007) they found that Higher planting density significantly increased, weight of small bulbs (738.11 g ha⁻¹), and by Jalani et al. (2009) they revealed that minimum plant population (20 plants/m²) had significantly larger bulb diameter (5.493 and 5.877 cm) during both years against smaller bulb diameter of wider plants density (40 plants/m²).

Table 8. Response of small bulbs %, bulb diameter and TSS % to row spacing and weed control treatments during 2015/2016 and 2016/2017 seasons.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>2015/2016</th>
<th>2016/2017</th>
<th>2016/2017</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5%</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td>Plant density (A):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>240 000 plant/ fed.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Small bulbs %</td>
<td>Bulb diamet.</td>
<td>TSS%</td>
</tr>
<tr>
<td></td>
<td>14.28</td>
<td>6.53</td>
<td>13.64</td>
</tr>
<tr>
<td></td>
<td>15.27</td>
<td>6.24</td>
<td>13.43</td>
</tr>
<tr>
<td>L.S.D at 5%:</td>
<td>0.46</td>
<td>0.41</td>
<td>0.67</td>
</tr>
<tr>
<td>Weed control treatments (B):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hand hoeing (twice)</td>
<td>10.99</td>
<td>7.43</td>
<td>14.30</td>
</tr>
<tr>
<td>Goal + Select (twice)</td>
<td>8.69</td>
<td>7.32</td>
<td>15.02</td>
</tr>
<tr>
<td>Ecopart + Select (once)</td>
<td>11.43</td>
<td>6.22</td>
<td>14.47</td>
</tr>
<tr>
<td>Ecopart + Select (twice)</td>
<td>12.15</td>
<td>6.82</td>
<td>13.82</td>
</tr>
<tr>
<td>Control</td>
<td>33.47</td>
<td>4.88</td>
<td>12.35</td>
</tr>
<tr>
<td>L.S.D at 5%:</td>
<td>1.22</td>
<td>0.42</td>
<td>0.51</td>
</tr>
<tr>
<td>Interaction (A x B):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>240,000 plant/col.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hand hoeing (twice)</td>
<td>5.87</td>
<td>7.85</td>
<td>15.36</td>
</tr>
<tr>
<td>Goal + Select (once)</td>
<td>5.53</td>
<td>7.50</td>
<td>14.82</td>
</tr>
<tr>
<td>Goal + Select (twice)</td>
<td>7.17</td>
<td>7.71</td>
<td>15.59</td>
</tr>
<tr>
<td>Ecopart + Select (once)</td>
<td>11.20</td>
<td>6.53</td>
<td>15.63</td>
</tr>
<tr>
<td>Ecopart + Select (twice)</td>
<td>16.85</td>
<td>7.37</td>
<td>13.92</td>
</tr>
<tr>
<td>Control</td>
<td>34.46</td>
<td>5.20</td>
<td>14.56</td>
</tr>
<tr>
<td>300,000 plant/col.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hand hoeing (twice)</td>
<td>15.76</td>
<td>7.65</td>
<td>13.58</td>
</tr>
<tr>
<td>Goal + Select (once)</td>
<td>12.17</td>
<td>6.76</td>
<td>14.53</td>
</tr>
<tr>
<td>Goal + Select (twice)</td>
<td>7.62</td>
<td>7.35</td>
<td>15.20</td>
</tr>
<tr>
<td>Ecopart + Select (once)</td>
<td>10.43</td>
<td>5.85</td>
<td>13.59</td>
</tr>
<tr>
<td>Ecopart + Select (twice)</td>
<td>9.94</td>
<td>6.75</td>
<td>13.81</td>
</tr>
<tr>
<td>Control</td>
<td>29.74</td>
<td>4.84</td>
<td>11.12</td>
</tr>
<tr>
<td>400,000 plant/col.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hand hoeing (twice)</td>
<td>11.32</td>
<td>6.78</td>
<td>13.97</td>
</tr>
<tr>
<td>Goal + Select (once)</td>
<td>10.48</td>
<td>6.56</td>
<td>13.06</td>
</tr>
<tr>
<td>Goal + Select (twice)</td>
<td>11.29</td>
<td>6.90</td>
<td>14.26</td>
</tr>
<tr>
<td>Ecopart + Select (once)</td>
<td>12.65</td>
<td>6.27</td>
<td>14.18</td>
</tr>
<tr>
<td>Ecopart + Select (twice)</td>
<td>9.66</td>
<td>6.34</td>
<td>13.73</td>
</tr>
<tr>
<td>Control</td>
<td>36.22</td>
<td>4.61</td>
<td>11.37</td>
</tr>
<tr>
<td>L.S.D at 5%:</td>
<td>2.11</td>
<td>N.S</td>
<td>0.88</td>
</tr>
</tbody>
</table>

The results showed that small bulbs%, bulb diameter and TSS% were significantly responded to weed control treatments in both seasons. Control treatments recorded the highest values of small bulbs, in both seasons; while, Goal + Select (twice) recorded the highest values of single bulb in the second season, and TSS% in both seasons. The lowest values of small bulbs were recorded under Goal + Select (twice) treatment, in both seasons; while the lowest values of bulb diameter in the first season,
and TSS% in both seasons were recorded under control treatments.

From data in Table 8, it could be noticed that small bulbs and TSS% were significantly affected by the interaction between the two factors; while, this effect did not reach the level of significance on bulb diameter. These results were true in both seasons. High onion density under control treatment gave the highest values of small bulbs%, in both seasons. Low onion density under Ecopart + Select (once), or Goal + Select (twice) treatments gave the highest values of TSS%, in the first and second season, respectively. The lowest combination for small bulbs% were recorded by planting onion at low density when applied with Goal + select (once), or hand hoeing, in the first and second seasons, respectively. While, the lowest combination for TSS% were recorded by using moderate onion density under control treatment, or when using high density under Goal + Select (once) treatment, in the first and second season, respectively.

5- Economic feasibility study:

Data in Table 9 showed that the highest onion density (400 000 plant/fed.) appeared the highest values of gross income, gross margin and percentage of benefit/cost ratio total cost, while the lowest density (240 000 plant/fed.) appeared the lowest values. In respect to the effect of weed control treatments on gross margin, it could be arranged in a descending order as follows: Goal + Select (twice), hand weeding (twice), Ecopart + Select (twice), Goal + Select (once) and Ecopart + Select (once) respectively. Un-weeded check treatments gave the lowest values of gross income, gross margin and the percentage of benefit/cost ratio by 11039 and -4411 LE, and 0.71%, respectively. Using of highest plant density (400 000 plant/fed.) and application of Goal + Select (twice) treatment gave the highest values of gross income, gross margin and percentage of benefit/cost ratio (39182 LE, 23172 LE and 2.45 %, respectively). These results were in line with that obtained by Gaharwar et al. (2017) and Geries, L. S. M. and Azza E. Khaffagy (2018) they revealed that Spraying of herbicide oxyfluoren 23.5% EC 0.1-0.15 kg a.i./ha 15-20 DAT + 1HW at 45 DAT recorded highest gross return as well as net return and scored highest cost benefit ratio 1:2.09. However, treatment T5-Spraying Oxyfluoren 23.5% EC 0.1-0.15 kg a.i./ha before planting +1HW at 40-60 DAT ranked second in control of weed growth and gained the higher bulb yield with monetary returns.

Table 9. Economic evaluation for onion crop as affected by plant density and weed control treatments as the mean for 2015/2016 and 2016/2017 seasons.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Total bulb yield (t/fed.)</th>
<th>Total Costs (L.E./fed)</th>
<th>Gross income (L.E./fed)</th>
<th>Gross margin (L.E./fed)</th>
<th>Benefit/Cost ratio (B/C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant density (A):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>240 000 plant/fed.</td>
<td>15.08</td>
<td>16081</td>
<td>26135</td>
<td>10055</td>
<td>1.60</td>
</tr>
<tr>
<td>300 000 plant/fed.</td>
<td>15.38</td>
<td>16031</td>
<td>27794</td>
<td>11943</td>
<td>1.70</td>
</tr>
<tr>
<td>400 000 plant/fed.</td>
<td>17.32</td>
<td>15981</td>
<td>29172</td>
<td>13191</td>
<td>1.80</td>
</tr>
<tr>
<td>Weed control treatments (B):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hand weeding (twice)</td>
<td>19.04</td>
<td>17450</td>
<td>33232</td>
<td>15782</td>
<td>1.90</td>
</tr>
<tr>
<td>Goal + Select (once)</td>
<td>16.50</td>
<td>15755</td>
<td>29973</td>
<td>14218</td>
<td>1.90</td>
</tr>
<tr>
<td>Goal + Select (twice)</td>
<td>19.27</td>
<td>16060</td>
<td>34717</td>
<td>18657</td>
<td>2.16</td>
</tr>
<tr>
<td>Icobart + Select (once)</td>
<td>15.54</td>
<td>15640</td>
<td>27019</td>
<td>11379</td>
<td>1.73</td>
</tr>
<tr>
<td>Icobart + Select (twice)</td>
<td>18.53</td>
<td>15830</td>
<td>30583</td>
<td>14753</td>
<td>1.93</td>
</tr>
<tr>
<td>Control</td>
<td>6.68</td>
<td>15450</td>
<td>11039</td>
<td>-4411</td>
<td>-0.71</td>
</tr>
<tr>
<td>Interaction (A x B):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>240 000 plant/fed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hand weeding (twice)</td>
<td>18.05</td>
<td>17500</td>
<td>31972</td>
<td>14472</td>
<td>1.83</td>
</tr>
<tr>
<td>Goal + Select (once)</td>
<td>15.21</td>
<td>15805</td>
<td>28536</td>
<td>12731</td>
<td>1.81</td>
</tr>
<tr>
<td>Goal + Select (twice)</td>
<td>17.53</td>
<td>15110</td>
<td>30710</td>
<td>14600</td>
<td>1.91</td>
</tr>
<tr>
<td>Icobart + Select (once)</td>
<td>14.15</td>
<td>15690</td>
<td>24262</td>
<td>8572</td>
<td>1.55</td>
</tr>
<tr>
<td>Icobart + Select (twice)</td>
<td>18.79</td>
<td>15880</td>
<td>30076</td>
<td>14196</td>
<td>1.89</td>
</tr>
<tr>
<td>Control</td>
<td>6.76</td>
<td>15500</td>
<td>11256</td>
<td>-4244</td>
<td>-0.73</td>
</tr>
<tr>
<td>300 000 plant/fed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hand weeding (twice)</td>
<td>17.81</td>
<td>17450</td>
<td>31990</td>
<td>14540</td>
<td>1.83</td>
</tr>
<tr>
<td>Goal + Select (once)</td>
<td>15.91</td>
<td>15755</td>
<td>30106</td>
<td>14351</td>
<td>1.91</td>
</tr>
<tr>
<td>Goal + Select (twice)</td>
<td>17.86</td>
<td>16060</td>
<td>34258</td>
<td>18198</td>
<td>2.13</td>
</tr>
<tr>
<td>Icobart + Select (once)</td>
<td>15.47</td>
<td>15640</td>
<td>27660</td>
<td>12020</td>
<td>1.77</td>
</tr>
<tr>
<td>Icobart + Select (twice)</td>
<td>18.32</td>
<td>15830</td>
<td>31736</td>
<td>15906</td>
<td>2.00</td>
</tr>
<tr>
<td>Control</td>
<td>6.91</td>
<td>15450</td>
<td>12094</td>
<td>-3356</td>
<td>-0.78</td>
</tr>
<tr>
<td>400 000 plant/fed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hand weeding (twice)</td>
<td>21.26</td>
<td>17400</td>
<td>35734</td>
<td>18334</td>
<td>2.05</td>
</tr>
<tr>
<td>Goal + Select (once)</td>
<td>18.38</td>
<td>15705</td>
<td>31276</td>
<td>15571</td>
<td>1.99</td>
</tr>
<tr>
<td>Goal + Select (twice)</td>
<td>22.42</td>
<td>16010</td>
<td>39182</td>
<td>23172</td>
<td>2.45</td>
</tr>
<tr>
<td>Icobart + Select (once)</td>
<td>17.00</td>
<td>15590</td>
<td>29136</td>
<td>13546</td>
<td>1.87</td>
</tr>
<tr>
<td>Icobart + Select (twice)</td>
<td>18.46</td>
<td>15780</td>
<td>29936</td>
<td>14156</td>
<td>1.90</td>
</tr>
<tr>
<td>Control</td>
<td>6.38</td>
<td>15400</td>
<td>9766</td>
<td>-5634</td>
<td>-0.63</td>
</tr>
</tbody>
</table>

REFERENCES

الربح للفدان
بزراعة البصل تحت الكثافة النباتية المرتفعة
متوسط وزن البصلة والمحصول التسويقي للفدان
لى اعلى القيم من عدد
نباتات البصل المنزرع فى الكثافة المنخفضة اعلى القيم من الابصال
الف نبات للفدان) اعلى القيم من من طول النبات
بر
الف نبات للفدان) فى القطع الرئيسية، بينما تم وضع معاملات مقاومة الحشائش (النقاوة اليدوية
النمو الخضرى والمحصول والجودة لمحصول البصل. وقد استخدم فى هذه التجربة تصميم القطع المنشقة
في محطة البحوث الزراعية بشندويل، محافظة سوهاج، لدراسة تاثير الكثافة النباتية
Purewal, S. S. and K. S. Dargan (1962). Fertilizer and
Piper, C.S. (1950). Soil and plant analysis. Inter
Panse, R.; A. Gupta; P.K. Jain; D. S. Sasode and S.
Marey, }

المحاولة والجودة والتقييم الاقتصادي للفدان المزرع بكثافات مختلفة تحت ظروف معاملات مكافحة الحشائش

المحصول والجودة والتقييم الاقتصادي للفدان المزرع بكثافات مختلفة تحت ظروف معاملات مكافحة الحشائش

 relaciones

1282 / 5102

